Project description:To evaluate the roles of gene regulation in Oryza sativa leaf, dynamic profiles of transcriptome were investigated in Oryza sativa L. spp. indica with different treatments, the aerial tissues of one-month-old plants from four different areas (groups 1–4) were treated with 0, 40 mL of 25% azoxystrobin, 0.01 g of VdAL, or 40 mL of 25% azoxystrobin plus 0.01 g VdAL, respectively.
Project description:Comparative transcriptome sequencing in leaf and root tissues of Control and Salt-treated Oryza sativa generated 52.2 and 17.29 million high-quality reads.
Project description:The potential of the earthworm Eisenia andrei to reduce soil methanogens, and thus methane emissions to the atmosphere, were assayed in a microcosm experiment. Soils were incubated for 2, 4 and 6 months. We measured microarray parameters (methanogenic diversity) at the start of incubation, as well as after 2, 4 and 6 months of incubation in microcosms with or without earthworms. Methanosarcina barkeri was the most abundant genus that was revealed by AnaeroChip in our experiment.
Project description:Examination of 3 tissue types in Oryza glabberima (accession CG14) by high throughput sequencing for small RNA discovery and expression profiling
Project description:affy_meloidogyne_rice - affy_meloidogyne_rice - Plant-parasitic nematodes cause profound economic losses to global agriculture with the obligate sedentary endoparasitic varieties; amongst them the cyst and Root Knot Nematode (RKN) species are the most damaging. Meloidogyne graminicola is a RKN mainly found in the monocotyledous plants. In the compatible interaction with Oryza sativa, M. graminicola induces the characteristic formation of hook-like galls resulting from the redifferentiation of root cells into multinucleate giant cells. In order to understand the global transcriptome changes occurring during infection, several recent microarray studies on root knots have demonstrated complex changes in host plant gene expression in response to infection. However, to our knowledge, all these transcriptome studies were performed on dicotyledous plants. A histological study enabled us to observe hyperplasia and hypertrophy of the surrounding cells leading to the formation of hook-like galls. We also investigated the plant response to M. graminicola by carrying out a global analysis of gene expression during gall formation in rice, using giant cell-enriched root tissues at an early stage (2dpi) and a latter stage (4dpi) of gall development.-Oryza sativa (var. Nipponbare) seedlings were grown on 6 cm3 SAP substrate completed with diluted Hoaglands solution (Reversat et al., 1999). Culture units were placed in a growth chamber illuminated with fluorescent tubes 9/24 h and maintained at 23°C for 5 days before being inoculated with a 100 J2-stage juveniles M. graminicola. One day after inoculation (dai), the rice seedlings were immersed in de-ionised water to remove all J2s that had not penetrated the roots and allowing synchronization of the infection. Each seedling was transferred to a hydroponic mini chamber (Reversat et al., 2004). Sampling was performed at 2 and 4 dai and each of them contained galls from 70 infected plants, they were then hand-dissected, frozen in liquid-nitrogen and stored at -80°C. As reference samples, uninfected meristematic root fragments were dissected from seedlings grown under the same conditions. Each sample was replicated 3 times. Keywords: normal vs disease comparison,time course
Project description:Iron (Fe) is an essential element to plants, but can be harmful if accumulated to toxic concentrations. Fe toxicity can be a major nutritional disorder in rice (Oryza sativa) when cultivated under waterlogged conditions, as a result of excessive Fe solubilization of in the soil. However, little is known about the basis of Fe toxicity and tolerance at both physiological and molecular level. Here we aim at understand the genotypic differences in two rice cultivars with contrasting phenotypes under Fe toxicity.
Project description:Although selenium (Se) is an essential trace element in humans, the intake of Se from food is still generally inadequate throughout the world. Inoculation with arbuscular mycorrhizal fungi (AMF) improves the uptake of Se in rice (Oryza sativa L.). However, the mechanism by which AMF improves the uptake of Se in rice at the transcriptome level is unknown. Only a few studies have evaluated the effects of uptake of other elements in rice under the combined effects of Se and AMF. In this study, Se combined with the AMF Funneliformis mosseae (Fm) increased the biomass and Se concentration of rice plants, altered the pattern of ionomics of the rice roots and shoots, and reduced the antagonistic uptake of Se with nickel, molybdenum, phosphorus, and copper compared with the treatment of Se alone, indicating that Fm can enhance the effect of fertilizers rich in Se. Furthermore, a weighted gene co-expression network analysis (WGCNA) showed that the hub genes in modules significantly associated with the genes that contained Se and were related to protein phosphorylation, protein serine/threonine kinase activity, membrane translocation, and metal ion binding, suggesting that the uptake of Se by the rice roots may be associated with these genes when Fm and Se act in concert. This study provides a reference for the further exploration of genes related to Se uptake in rice under Fm treatment.
Project description:In this study, we examined the transcriptome dynamics within the matured fully expanded rice leaf and used strand-specific RNA sequencing to generate a comprehensive transcriptome dataset for the mature rice leaf. The rice Nipponbare (Oryza sativa l. japonica) seedlings were grown in the greenhouse. About 20 days after planting, the fully opened 4th leaves was cut it into seven 3-cm segments, from bottom to tip and labeled as sections 1 to 7, respectively. The tissues were immediately frozen in liquid nitrogen for total RNA extraction. Two biological replicates were collected for each section. Note: All samples in SRA were assigned the same sample accession (SRS685294). This is incorrect as there are different samples, hence âSource Nameâ was replaced with new values. Comment[ENA_SAMPLE] contains the original SRA sample accessions.