Project description:Analysis of primary PDAC cells established from Pdx-1CreAPCL/+p53L/L and Pdx-1Crep53L/L mice. APC haploinsufficiency combined with P53 loss in the pancreas drives MCN progression in mice. Results provide insight into molecular mechanisms invloved in the MCN formation of Pdx-1Cre APCL/+P53L/L mice. Pdx-1CreAPC+/LP53L/L PDAC cell lines and 2 Pdx-1CreP53L/L ductal cell lines were analyzed.
Project description:There is a strong need to develop patient-derived xenograft (PDX) tumor models for studying new treatment options for gastric cancer (GC). With low engraftment success, few collections of GC PDX have been reported and molecular basis of the model establishment remain largely unknown. Here we established n=27 PDX models from n=100 GC tumors and compared their characteristics to GC patient tumors based on the recent work done by ACRG and TCGA, to evaluate the representativeness and relevance of the collection for drug testing. We show that MSI, CIN and MSS/TP53- tumors were preferentially established as PDX, while MSS/EMT and EBV not and that PDX models retained histology and molecular subtypes of parental tumors. By using synapse database, we identified 48 druggable alterations that could be investigated with the collection. Counting alterations for these 48 genes in PDX compared to TCGA tumors revealed models frequently classified with heavily altered tumors but well preserved genomic alteration patterns specific of each GC subtype. The molecular analysis of n=8/27 tumors and corresponding PDX at passage P1, P2 and P3 revealed variations in somatic alteration content both at single nucleotide and chromosomal level in highly unstable MSI and CIN tumors, with changes occurring mainly at P1. In two cases, we show likely emergence of rare subclones carrying known oncogenic alterations in KRAS and PIK3CA. Significance. This study presents a resource of fully annotated GC PDX models for anticancer agent testing. We show that beside close resemblance of PDX with parental tumors, not all subtypes are established, and that the clonal selection plays a key role the establishment of certain tumors. This may have a bearing on translation of observations into the clinic and underline the need to frequently survey the molecular characteristics of the PDX models.
Project description:There is a strong need to develop patient-derived xenograft (PDX) tumor models for studying new treatment options for gastric cancer (GC). With low engraftment success, few collections of GC PDX have been reported and molecular basis of the model establishment remain largely unknown. Here we established n=27 PDX models from n=100 GC tumors and compared their characteristics to GC patient tumors based on the recent work done by ACRG and TCGA, to evaluate the representativeness and relevance of the collection for drug testing. We show that MSI, CIN and MSS/TP53- tumors were preferentially established as PDX, while MSS/EMT and EBV not and that PDX models retained histology and molecular subtypes of parental tumors. By using synapse database, we identified 48 druggable alterations that could be investigated with the collection. Counting alterations for these 48 genes in PDX compared to TCGA tumors revealed models frequently classified with heavily altered tumors but well preserved genomic alteration patterns specific of each GC subtype. The molecular analysis of n=8/27 tumors and corresponding PDX at passage P1, P2 and P3 revealed variations in somatic alteration content both at single nucleotide and chromosomal level in highly unstable MSI and CIN tumors, with changes occurring mainly at P1. In two cases, we show likely emergence of rare subclones carrying known oncogenic alterations in KRAS and PIK3CA. Significance. This study presents a resource of fully annotated GC PDX models for anticancer agent testing. We show that beside close resemblance of PDX with parental tumors, not all subtypes are established, and that the clonal selection plays a key role the establishment of certain tumors. This may have a bearing on translation of observations into the clinic and underline the need to frequently survey the molecular characteristics of the PDX models.
Project description:Data interpreting of PDX proteome is still a problem because with the growth of human cancerous tissue in an immunodeficient mouse, the endothelial cells and fibroblasts from the host mouse replaced human stromal components, making PDX sample a mixture of human and mouse cells. In this study, we created four human and mouse protein mixtures with different human protein percentages as the standard testing sets. We established an easy algorithm to fit the known proportions and used this strategy on a pair of PDX samples. Our data suggested that our new algorithm is feasible and may help to offer more information on PDX proteome data analysis.
Project description:RNA sequencing was conducted between the control diet(CD) and 70 kcal% sucrose diet (SD) group to identify the critical factor of different characteristics. Ovarian cancer PDX model(PDX-126) were established in BALB/c nude mice and they fed CD and 70 kcal% SD for long time. Tumor tissues obtained from mice were used for RNA sequencing.
Project description:The patient-derived xenograft (PDX) model retains the heterogeneity of patient tumors, allowing a means to not only examine efficacy of a therapy across a population, but also study crucial aspects of cancer biology in response to treatment. Herein we describe the development and characterization of an ovarian-PDX model in order to study the development of chemoresistance. We demonstrate that PDX tumors are not simply composed of tumor-initiating cells, but recapitulate the original tumor’s heterogeneity, oncogene expression profiles, and clinical response to chemotherapy. Combined carboplatin/paclitaxel treatment of PDX tumors enriches the cancer stem cell populations, but persistent tumors are not entirely composed of these populations. RNA-Seq analysis of treated PDX tumors compared to untreated tumors demonstrates a consistently contrasting genetic profile after therapy, suggesting similar, but few, pathways are mediating chemoresistance. The pathways most significantly altered included Protein Kinase A signaling, GNRH signaling, and sphingosine-1-phosphate signaling. Pathways and genes identified by this methodology represent novel approaches to targeting the chemoresistant population in ovarian cancer 6 pairs of Patient-Derived Xenografts (PDX) were ananlyzed using RNA-seq for a total of 12 samples. Each pair consists of a treated and untreated PDX of ovarian cancer. Treated Ovarian cancer PDXs were treated with 4 weeks of a combination of carboplatin and taxol. RNA was isolated and converted to cDNA. RNA-seq was conductred on the Illumina HiSeq 2000 with 50 bp paired end sequencing
Project description:We investigated the gene expression changes in a library of small cell lung carcinoma (SCLC) patient-derived xenograft (PDX) models.