Project description:To determine the global gene occupancy by Wiskott - Aldrich syndrome Protein (WASP) we perform ChIP-seq assay in two lymphoblastoid cell lines. We identify WASP-enriched genes, including several WASP-interaction genes previously reported; in addition, our results suggest the implication of WASP in diverse cellular process
Project description:This experiment intended to define differential gene expression between germinal center B cells expressing or not the Wiskott-Aldrich syndrome protein in mice. Sequencing was obtained on an Illumina HiSeq2500 system from Dark Zone GCB (DAPI-CD19+ GL7+IgD-CXCR4highCD86low) purified from CTL and GCBcWKO mice (n=4).
Project description:BackgroundWiskott-Aldrich syndrome is an X-linked recessive immunodeficiency due to mutations in Wiskott-Aldrich syndrome (WAS) gene. WAS gene is encoded for a multifunctional protein with key roles in actin polymerization, signaling pathways, and cytoskeletal rearrangement. Therefore, the impaired protein or its absence cause phenotypic spectrum of the disease. Since identification of novel mutations in WAS gene can help uncover the exact pathogenesis of Wiskott-Aldrich syndrome, the purpose of this study was to investigate disease causing-mutation in an Iranian male infant suspicious of this disorder.Case presentationThe patient had persistent thrombocytopenia from birth, sepsis, and recurrent gastrointestinal bleeding suggestive of both Wiskott-Aldrich syndrome and chronic colitis in favor of inflammatory bowel disease (IBD). To find mutated gene in the proband, whole exome sequencing was performed for the patient and its data showed a novel, private, hemizygous splice site mutation in WAS gene (c.360 + 1G > C).ConclusionsOur study found a novel, splice-site mutation in WAS gene and help consider the genetic counselling more precisely for families with clinical phenotypes of both Wiskott-Aldrich syndrome and inflammatory bowel disease and may suggest linked pathways between these two diseases.
Project description:Wiskott-Aldrich syndrome protein (WASP) is in a complex with WASP-interacting protein (WIP). WASP levels, but not mRNA levels, were severely diminished in T cells from WIP(-/-) mice and were increased by introduction of WIP in these cells. The WASP binding domain of WIP was shown to protect WASP from degradation by calpain in vitro. Treatment with the proteasome inhibitors MG132 and bortezomib increased WASP levels in T cells from WIP(-/-) mice and in T and B lymphocytes from two WAS patients with missense mutations (R86H and T45M) that disrupt WIP binding. The calpain inhibitor calpeptin increased WASP levels in activated T and B cells from the WASP patients, but not in primary T cells from the patients or from WIP(-/-) mice. Despite its ability to increase WASP levels proteasome inhibition did not correct the impaired IL-2 gene expression and low F-actin content in T cells from the R86H WAS patient. These results demonstrate that WIP stabilizes WASP and suggest that it may also be important for its function.
Project description:Although T cell dysfunction and lymphopenia are key features of immunodeficient patients with the Wiskott-Aldrich syndrome and Wiskott-Aldrich syndrome protein (WASP)-deficient mice, T cell development appears relatively normal. We hypothesized that N-WASP, a ubiquitously expressed homologue of WASP, may serve a redundant function with WASP. To examine the unique and redundant activities of WASP and N-WASP, we generated ES cells devoid of WASP and N-WASP [double knockout (DKO)] and used the RAG-2-deficient blastocyst complementation system to generate DKO lymphocytes. Moreover, we mated WASP KO mice with mice containing a conditionally targeted N-WASP allele and used the Cre-loxP system to generate mice lacking WASP and N-WASP in T cells [conditional DKO (cDKO)]. In both systems, N-WASP-deficient cells were indistinguishable from WT cells. In contrast, T cell development in DKO and cDKO mice was markedly altered, as shown by thymic hypocellularity and reduced numbers of peripheral T cells. We found that the combined activity of WASP and N-WASP was important for CD4(-)CD8(-) double-negative (DN)-to-CD4(+)CD8(+) double-positive (DP) cell transition, and this may be partly explained by reduced cycling DN3 cells. In addition, decreased migratory responses of CD4(+)CD8(-) and CD4(-)CD8(+) single-positive (SP) cells and increased percentage of CD69(low)CD24(low) and CD62L(low) SP cells in cDKO cells imply retention of SP cells in the thymus. In summary, this study suggests that, although WASP serves a unique role for peripheral T cell function, T cell development depends on the combined activity of WASP and N-WASP.
Project description:Wiskott-Aldrich syndrome (WAS) is a disorder characterized by rare X-linked genetic immune deficiency with mutations in the was gene, a gene expressed specifically in hematopoietic cells, and the spleen plays a major role in hematopoiesis and the clearance of red blood cell. However, till now, comprehensive analyses of the spleen between wild type (WT) and WASp-deficient (WAS-KO) mice, especially at the transcriptomic level, have not been studied. Here, single-cell RNA sequencing (scRNA-seq) was adopted to identify various types of immune cells and investigate the mechanism of immune deficiency. We identified 30 clusters and 10 major cell subtypes among 11, 269 cells, including B cell, T cell, dendritic cell (DC), Natural Killer (NK) cell, monocyte, macrophage, granulocyte, stem cell and erythrocyte. Meanwhile, we evaluated the gene expression differences of cell subtypes, and analyzed the differential gene expression (DEGs) and enrichment analyses to reveal the reasons for the dysfunction of these different cell populations in WAS. Furthermore, some key genes were screened out by comparing the DEGs of each cell type during specific and non-specific immunization, and further analysis showed that these key genes were newly discovered pathologically related genes in WAS-KO mice. In summary, we present a detailed single cell resolution landscape of immune cells in spleen of WAS-KO mice. These unprecedented data uncovered the transcriptional characteristics of specific and non-specific immune cells, and the key genes were identified to lay a foundation for future studies of WAS, especially in discovering novel and underexplored mechanisms to improve gene therapies for WAS.
Project description:Wiskott-Aldrich Syndrome-causative mutations disrupt alternative splicing and promote gene networks predisposed to hematologic malignancies
Project description:In T lymphocytes, the Wiskott-Aldrich Syndrome protein (WASP) and WASP-interacting-protein (WIP) regulate T cell antigen receptor (TCR) signaling, but their role in lymphoma is largely unknown. Here we show that the expression of WASP and WIP is frequently low or absent in anaplastic large cell lymphoma (ALCL) compared to other T cell lymphomas. In anaplastic lymphoma kinase-positive (ALK+) ALCL, WASP and WIP expression is regulated by ALK oncogenic activity via its downstream mediators STAT3 and C/EBP-β. ALK+ lymphomas were accelerated in WASP- and WIP-deficient mice. In the absence of WASP, active GTP-bound CDC42 was increased and the genetic deletion of one CDC42 allele was sufficient to impair lymphoma growth. WASP-deficient lymphoma showed increased mitogen-activated protein kinase (MAPK) pathway activation that could be exploited as a therapeutic vulnerability. Our findings demonstrate that WASP and WIP are tumor suppressors in T cell lymphoma and suggest that MAP-kinase kinase (MEK) inhibitors combined with ALK inhibitors could achieve a more potent therapeutic effect in ALK+ ALCL.