Project description:Rett Syndrome (RTT) is a severe neurological disorder predominantly affecting females, caused by mutations in the methyl CpG binding protein 2 (MECP2) gene. Understanding the pathophysiology of RTT at a cellular and molecular level is crucial for the development of targeted therapies. Our project aims to dissect the molecular underpinnings of RTT using a novel in vitro model system based on a commercially available human neural progenitor cell line, ReNCell. We have engineered multiple distinct ReNCell lines to mimic specific genetic alterations associated with RTT, providing a robust platform for mechanistic studies and drug screening. This cell line carries a point mutation in the MECP2 gene (R133C), a common mutation in RTT patients, which alters the function of the MeCP2 protein. The model will allow us to study the impact of this mutation on neural development and function at a cellular level, providing insights into the disease's neuropathology.
Project description:Rett Syndrome (RTT) is a severe neurological disorder predominantly affecting females, caused by mutations in the methyl CpG binding protein 2 (MECP2) gene. Understanding the pathophysiology of RTT at a cellular and molecular level is crucial for the development of targeted therapies. This project aims to dissect the molecular underpinnings of RTT using a novel in vitro model system based on a commercially available human neural progenitor cell line, ReNCell. We have engineered multiple distinct ReNCell lines to mimic specific genetic alterations associated with RTT, providing a robust platform for mechanistic studies and drug screening. One cell line is a complete knockout of MECP2, serving as a model to investigate the effects of total loss of MeCP2 function. This model helps in understanding the full spectrum of MeCP2's roles in neural development and maintenance, and in identifying compensatory mechanisms that could be targeted therapeutically. The other line involves the knockdown of NEAT1, a long non-coding RNA known to be involved in the pathogenesis of several neurological disorders, including RTT. Recent studies suggest NEAT1 plays a critical role in the neuronal cellular response to MECP2 dysfunction. By reducing NEAT1 expression, we aim to elucidate its contribution to RTT pathology and explore its potential as a therapeutic target. Here we characterize the transcriptome of these cell lines, including the wild type (control), at the progenitor state and after 7 days of differentiation with three replicates each.
Project description:Rett Syndrome (RTT) is a severe neurological disorder predominantly affecting females, caused by mutations in the methyl CpG binding protein 2 (MECP2) gene. Understanding the pathophysiology of RTT at a cellular and molecular level is crucial for the development of targeted therapies. Our project aims to dissect the molecular underpinnings of RTT using a novel in vitro model system based on a commercially available human neural progenitor cell line, ReNCell. We have engineered multiple distinct ReNCell lines to mimic specific genetic alterations associated with RTT, providing a robust platform for mechanistic studies and drug screening. This cell line is a complete knockout of MECP2, serving as a model to investigate the effects of total loss of MeCP2 function. This model helps in understanding the full spectrum of MeCP2's roles in neural development and maintenance, and in identifying compensatory mechanisms that could be targeted therapeutically. We capture the progenitor state (0 days), and differentiation states at 3, 7, 14, 21 and 30 days for both the MECP2 knockut and the corresponding wildtype.
Project description:In this study we isolated and cultured neural progenitor cells (NPCs) from human fetal brain collected during the gliogenic phase (second trimester) of aborted fetuses, we differentiated NPCs into astrocyte using different protocols (FBS or CNTF/BMP4) and utilized RNA sequencing to analyze transcriptomic changes underlying the differentiation process
Project description:Rett Syndrome (RTT), a human neurodevelopmental disorder characterized by severe cognitive and motor impairments, is caused by dysfunction of the conserved transcriptional regulator Methyl-CpG-binding protein 2 (MECP2). Genetic analyses in mouse Mecp2 mutants, which exhibit key features of human RTT, have been essential for deciphering the mechanisms of MeCP2 function; nonetheless, our understanding of these complex mechanisms is incomplete. Zebrafish mecp2 mutants exhibit mild behavioral deficits but have not been analyzed in depth. Here we combine transcriptomic and behavioral assays to assess baseline and stimulus-evoked motor responses and sensory filtering in zebrafish mecp2 mutants from 5-7 days post-fertilization (dpf). We show that zebrafish mecp2 function is dispensable for gross movement, acoustic startle response, and sensory filtering (habituation and sensorimotor gating), and reveal a previously unknown role for mecp2 in behavioral responses to visual stimuli. RNA-seq analysis identified a large gene set that requires mecp2 function for correct transcription at 4 dpf, and pathway analysis revealed several pathways that require MeCP2 function in both zebrafish and mammals. These findings show that MeCP2’s function as a transcriptional regulator is conserved across vertebrates and supports using zebrafish to complement mouse modeling in elucidating these conserved mechanisms.
Project description:Characterization of the entire transcriptomic profile of the five major neural progenitor populations of the SVZ, in particular a new population of abundant immature neuroblasts not already described in the literature.