Project description:Wolbachia is a maternally transmitted bacterium that manipulates arthropod and nematode biology in myriad ways. The Wolbachia strain colonizing Drosophila melanogaster creates sperm-egg incompatibilities and protects its host against RNA viruses, making it a promising tool for vector control. Despite successful trials using Wolbachia-transfected mosquitoes for Dengue control, knowledge of how Wolbachia and viruses jointly affect insect biology remains limited. Using the Drosophila melanogaster model, transcriptomics and gene expression network analyses revealed pathways with altered expression and splicing due to Wolbachia colonization and virus infection. Included are metabolic pathways previously unknown to be important for Wolbachia-host interactions. Additionally, Wolbachia-colonized flies exhibit a dampened transcriptomic response to virus infection, consistent with early blocking of virus replication. Finally, using Drosophila genetics, we show Wolbachia and expression of nucleotide metabolism genes have interactive effects on virus replication. Understanding the mechanisms of pathogen blocking will contribute to the effective development of Wolbachia-mediated vector control programs.
Project description:Use of the bacterium Wolbachia is an innovative new strategy designed to break the cycle of dengue transmission. There are two main mechanisms by which Wolbachia could achieve this: by reducing the level of dengue virus in the mosquito and/or by shortening the host mosquito's lifespan. However, although Wolbachia shortens the lifespan, it also gives a breeding advantage which results in complex population dynamics. This study focuses on the development of a mathematical model to quantify the effect on human dengue cases of introducing Wolbachia into the mosquito population. The model consists of a compartment-based system of first-order differential equations; seasonal forcing in the mosquito population is introduced through the adult mosquito death rate. The analysis focuses on a single dengue outbreak typical of a region with a strong seasonally-varying mosquito population. We found that a significant reduction in human dengue cases can be obtained provided that Wolbachia-carrying mosquitoes persist when competing with mosquitoes without Wolbachia. Furthermore, using the Wolbachia strain WMel reduces the mosquito lifespan by at most 10% and allows them to persist in competition with non-Wolbachia-carrying mosquitoes. Mosquitoes carrying the WMelPop strain, however, are not likely to persist as it reduces the mosquito lifespan by up to 50%. When all other effects of Wolbachia on the mosquito physiology are ignored, cytoplasmic incompatibility alone results in a reduction in the number of human dengue cases. A sensitivity analysis of the parameters in the model shows that the transmission probability, the biting rate and the average adult mosquito death rate are the most important parameters for the outcome of the cumulative proportion of human individuals infected with dengue.
Project description:Wolbachia, an endosymbiotic bacterium, is being investigated as a vector control agent in several insect species. Along with the well known classical reproductive parasitism Wolbachia employs against its host to spread within the population, it is emerging that the bacteria can protect the host against pathogens and reduced pathogen transmission. Anopheles mosquitoes, which transmit malaria, have never been found to harbour Wolbachia in nature, and despite numerous transinfection attempts, no stable line has been developed. However recently, two strains of Wolbachia, wAlbB from Aedes albopictus, and wRi from Drosophila simulans were cultured in Anopheles gambiae Sua5B cells. These cell lines provides an amenable system to study Wolbachia-Anopheles interaction in the absence of a stable transinfected line. It has been proposed that the compromised vector competence of Wolbachia infected insects is due to an up regulation of the basal immune state. We therefore completed a genome wide expression profile of Wolbachia infected Anopheles, assessing both wAlbB and wRi infected cells in parallel against uninfected Sua5B cells.
Project description:Wolbachia, an endosymbiotic bacterium, is being investigated as a vector control agent in several insect species. Along with the well known classical reproductive parasitism Wolbachia employs against its host to spread within the population, it is emerging that the bacteria can protect the host against pathogens and reduced pathogen transmission. Anopheles mosquitoes, which transmit malaria, have never been found to harbour Wolbachia in nature, and despite numerous transinfection attempts, no stable line has been developed. However recently, two strains of Wolbachia, wAlbB from Aedes albopictus, and wRi from Drosophila simulans were cultured in Anopheles gambiae Sua5B cells. These cell lines provides an amenable system to study Wolbachia-Anopheles interaction in the absence of a stable transinfected line. It has been proposed that the compromised vector competence of Wolbachia infected insects is due to an up regulation of the basal immune state. We therefore completed a genome wide expression profile of Wolbachia infected Anopheles, assessing both wAlbB and wRi infected cells in parallel against uninfected Sua5B cells. Two strains of Wolbachia, wRi from Drosophila simulans and wAlbB from Aedes albopictus were transfered into Anopheles gambiae Sua5B cells via the shell vial technique. After over 30 passages, these Wolbachia infected cells lines were then compared, in parallel, to the original uninfected Sua5B cells using Affymetrix microarrays.
Project description:Certain strains of the intracellular endosymbiont Wolbachia can strongly inhibit or block the transmission of viruses such as dengue by Aedes mosquitoes, and the mechanisms responsible are still not well understood. Direct infusion and liquid chromatography FT-ICR mass spectrometry based lipidomicse DIMS and LCMS analyses were conducted using Aedes albopictus Aa23 cells that were infected with the wMel and wMelPop strains of Wolbachia compared to uninfected cells. Substantial shifts in the cellular lipid profile were apparent in the presence of Wolbachia. Most significantly, sphingolipids were depleted across all classes, and some reduction in diacylglyerol fatty acids and phosphatidylcholines was also observed. These lipid classes have previously been shown to be selectively enriched in DENV-infected mosquito cells, suggesting that Wolbachia may produce a cellular lipid environment that is antagonistic to viral replication. The data improve understanding of the intracellular interactions between Wolbachia and mosquitoes.
Project description:We characterized the miRNA composition of the nucleus and the cytoplasm of uninfected cells and compared it with the one of cells infected with the endosymbiotic bacterium Wolbachia strain wMelPop-CLA. We found an overall increase of small RNAs between 18 and 28 nucleotides in both cellular compartments in Wolbachia-infected cells and identified specific miRNAs induced and/or suppressed by the Wolbachia infection. We discuss the mechanisms that the cell may use to shuttle miRNAs between the cytoplasm and the nucleus. In addition, we identified piRNAs that changed their abundance in response to Wolbachia infection. The miRNAs and piRNAs identified in this study provide promising leads for investigations into the host-endosymbiont interactions and for better understanding of how Wolbachia manipulates the host miRNA machinery in order to facilitate its persistent replication in infected cells.
Project description:Transcriptional profiling of Drosophila melanogaster larval testes with and without the wMel strain of Wolbachia and found that 296 genes had at least a 1.5 fold change [q-value (%)<5%] in transcript levels, with 167 genes up-regulated and 129 genes down-regulated when comparing Wolbachia-infected flies to uninfected ones. Differential expression of genes related to metabolism, immunity, reproduction and other functions were observed.
Project description:Using microarray-based comparative genome hybridizations (mCGH), the genomic content of Wolbachia pipientis wMel from Drosophila melanogaster was compared to the Wolbachia from D. innubila (wInn), D. santomea (wSan), and three strains from D. simulans (wAu, wRi, wSim).
Project description:Globally invasive Aedes aegypti mosquitoes disseminate numerous arboviruses that impact human health. One promising method to control Ae. aegypti populations is transinfection with the intracellular bacterium Wolbachia pipientis, a symbiont that naturally infects ~40-52% of insects but is normally absent from Ae. aegypti. Transinfection of Ae. aegypti with the wMel Wolbachia strain induces cytoplasmic incompatibility (CI), allowing infected individuals to rapidly invade native populations. Further, wMel Wolbachia-infected females display refractoriness to medically relevant arboviruses. Thus, wMel Wolbachia-infected Ae. aegypti are being released in several areas to replace native populations, thereby suppressing disease transmission by this species. Wolbachia is reported to have minimal effects on Ae. aegypti fertility, but its influence on other reproductive processes is unknown. Female insects undergo several post-mating physiological and behavioral changes required for optimal fertility. Post-mating responses (PMRs) in female insects are typically elicited by receipt of male seminal fluid proteins (SFPs) transferred with sperm during mating, but can be modified by other factors, such as adult age, nutritional status, and microbiome composition. To assess how Wolbachia infection influences Ae. aegypti female PMRs, we collected wMel Wolbachia-infected Ae. aegypti from the field in Medellín, Colombia and introduced the bacterium into our laboratory strain. We found that Wolbachia influences female fecundity, fertility, and re-mating incidence. Further, we observed that Wolbachia significantly extends longevity of virgin females. Changes in female PMRs are not due to defects in sperm transfer by infected males, or sperm storage by infected females. Using proteomic methods to examine the seminal proteome of infected males, we found that Wolbachia infection has a moderate effect on SFP composition. However, we identified 125 Wolbachia proteins that are paternally transferred to females by infected males. Surprisingly, the CI factor proteins (Cifs), were not detected in the ejaculates of Wolbachia-infected males. Our findings indicate that Wolbachia infection of Ae. aegypti alters female post-mating responses, potentially influencing control programs that utilize Wolbachia-infected individuals.