Project description:Bacillus amyloliquefaciens FZB42 is a representative organism for Gram positive soil bacteria associated with plant roots and beneficial to plant growth. It is of immense importance to understand mechanisms of this class of bacteria adapting to rhizosphere. In this work employing differential RNA sequencing (RNA-seq) and Northern blot, we systematically identified transcription start sites of mRNAs as well as non-coding regulatory RNAs in FZB42. The genes regulated at different growth phases and located in polycistronic operons were also identified. A set of genes were re-annotated. In addition, a sRNA named Bas01 was identified to be involved in Bacillus sporulation and biofilm formation. The result we obtained provides valuable data for investigation of Bacillus gene expression and molecular details of rhizobacterial interaction with host plants.
Project description:Plants and rhizosphere microbes rely closely on each other, with plants supplying carbon to bacteria in root exudates, and bacteria mobilizing soil-bound phosphate for plant nutrition. When the phosphate supply becomes limiting for plant growth, the composition of root exudation changes, affecting rhizosphere microbial communities and microbially-mediated nutrient fluxes. To evaluate how plant phosphate deprivation affects rhizosphere bacteria, Lolium perenne seedlings were root-inoculated with Pseudomonas aeruginosa 7NR, and grown in axenic microcosms under different phosphate regimes (330 uM vs 3-6 uM phosphate). The effect of biological nutrient limitation was examined by DNA microarray studies of rhizobacterial gene expression.
Project description:Proteomics data used in the evaluation of Micromonas pusilla as part of a larger comparison associated with marine diversity and ancestral characteristics of land plants
Project description:Bacillus amyloliquefaciens FZB42 is a representative organism for Gram positive soil bacteria associated with plant roots and beneficial to plant growth. It is of immense importance to understand mechanisms of this class of bacteria adapting to rhizosphere. In this work employing differential RNA sequencing (RNA-seq) and Northern blot, we systematically identified transcription start sites of mRNAs as well as non-coding regulatory RNAs in FZB42. The genes regulated at different growth phases and located in polycistronic operons were also identified. A set of genes were re-annotated. In addition, a sRNA named Bas01 was identified to be involved in Bacillus sporulation and biofilm formation. The result we obtained provides valuable data for investigation of Bacillus gene expression and molecular details of rhizobacterial interaction with host plants. Examination of transcriptome profile of rhizobacterium B. amyloliquefaciens FZB42 grown under six conditions.