Project description:Effect of the inactivation of locus PP4959 upon gene expression of P. putida KT2440 in the rhizosphere of corn (Zea mays var. Girona). This locus encodes the unique dual GGDEF/EAL domains response regulator in KT2440. To identify those genes with altered expression, cells were recovered from the rhizosphere six days after inoculation of gnotobiotic seedlings.
Project description:It has been performed a genome-wide analysis of gene expression of the root-colonizing bacterium Pseudomonas putida KT2440 in the rhizosphere of corn (Zea mays var. Girona. To identify reliable rhizosphere differentially expressed genes, rhizosphere populations of P. putida bacteria cells were compared with three alternative controls: i) planktonic cells growing exponentially in rich medium (LB), ii) planktonic cells in stationary phase in LB, and iii) sessile populations established in sand microcosms, under the same conditions used to grow inoculated corn plants.
Project description:In this work, we performed high throughput sequencing of small RNA libraries in maize (Zea mays ssp. mays) and teosinte (Zea mays ssp. parviglumis) to investigate the response mediated by miRNAs in these plants under control conditions, submergence, drought and alternated drought-submergence or submergence-drought stress. After Illumina sequencing of 8 small RNA libraries, we obtained from 16,139,354 to 46,522,229 raw reads across the libraries. Bioinformatic analysis identified 88 maize miRNAs and 76 miRNAs from other plants differentially expressed in maize and/or in teosinte in response to at least one of the treatments, and revealed that a larger set of miRNAs were regulated in maize than in teosinte in response to submergence and drought stress.
Project description:The differentiation of specialized feeding sites in Zea mays root cells in response to nematode infestation involves substantial cellular reprogramming of host cells that is not well characterized at the molecular level. Expression data was generated from Zea mays root cells undergoing giant cell formation due to nematode infestation and from non-infested control root cells. Cells were laser captured 14 and 21 days after infestation.
Project description:We report the application of whole transcriptome sequencing technology for high-throughput profiling of coding and non-coding RNAs associated with Spodoptera frugiperda feeding in Zea mays. 4,366 mRNAs and 233 lncRNAs were differentially expressed during Spodoptera frugiperda feeding in Zea mays. Our data contribute to the understanding of the function of coding and non-coding RNAs in the regulation of plant-insect interactions.