Project description:We study the genetics, including microarray karyotyping using comparative genomic hybridization, to explore global changes in the genomic DNA of seven S. cerevisiae strains related to traditional fermentations of very different sources comparing to the sequenced S. cerevisiae laboratory strain (S288C). Our final goal is to determine the adaptive evolution of properties of biotechnological interest in Saccharomyces yeasts. Many copy number variations (CNVs) were observed, especially in genes associated to subtelomeric regions and transposon elements. Among the fermentation strains, differential CNV was observed in genes related to sugar transport and metabolism. An outstanding example of diverse CNV is the gen PUT1, involved in proline assimilation, which correlated with the adaptation of the strains to the presence of this nitrogen source in the media. Seven S. cerevisiae strains were obtained from natural environments and different fermentation processes. The S. cerevisiae strain S288C was used as a control for microarray hybridizations. All experiments were performed using duplicate arrays, and Cy5-dCTP and Cy3-dCTP dye-swap assays were performed to reduce dye-specific bias.
Project description:Adaptation to hydrogen peroxide in Saccharomyces cerevisiae is profiled with expression arrays. Adaptation describes the process in which a mild dose of toxin (in this case, hydrogen peroxide) is able to protect against a later acute dose. Here, we study two adaptive protocols (0.1 mM H2O2 and 0.1 + 0.4 mM H2O2) and one acute protocol (0.4 mM H2O2) to identify processes uniquely involved in adaptation. Predictions from these studies are validated in expression profiling of deletion mutants of the transcription factors Yap1, Mga2, and Rox1.
Project description:We study the genetics, including microarray karyotyping using comparative genomic hybridization, to explore global changes in the genomic DNA of seven S. cerevisiae strains related to traditional fermentations of very different sources comparing to the sequenced S. cerevisiae laboratory strain (S288C). Our final goal is to determine the adaptive evolution of properties of biotechnological interest in Saccharomyces yeasts. Many copy number variations (CNVs) were observed, especially in genes associated to subtelomeric regions and transposon elements. Among the fermentation strains, differential CNV was observed in genes related to sugar transport and metabolism. An outstanding example of diverse CNV is the gen PUT1, involved in proline assimilation, which correlated with the adaptation of the strains to the presence of this nitrogen source in the media.
Project description:CGH arrays for Smukowski Heil, et al MBE 2017. Hybridization is often considered maladaptive, but sometimes hybrids can invade new ecological niches and adapt to novel or stressful environments better than their parents. The genomic changes that occur following hybridization that facilitate genome resolution and/or adaptation are not well understood. Here, we address these questions using experimental evolution of de novo interspecific hybrid yeast Saccharomyces cerevisiae x Saccharomyces uvarum and their parentals. We evolved these strains in nutrient limited conditions for hundreds of generations and sequenced the resulting cultures to identify genomic changes. Analysis of 16 hybrid clones and 16 parental clones identified numerous point mutations, copy number changes, and loss of heterozygosity events, including species biased amplification of nutrient transporters. We focused on a particularly interesting example, in which we saw repeated loss of heterozygosity at the high affinity phosphate transporter gene PHO84 in both intra- and interspecific hybrids. Using allele replacement methods, we tested the fitness of different alleles in hybrid and S. cerevisiae strain backgrounds and found that the loss of heterozygosity is indeed the result of selection on one allele over the other in both S. cerevisiae and the hybrids. This is an example where hybrid genome resolution is driven by positive selection on existing heterozygosity, and demonstrates that even infrequent outcrossing may have lasting impacts on adaptation.
Project description:Aims: We performed an analysis of maltotriose utilization by 52 Saccharomyces yeast strains able to ferment maltose efficiently and correlated the observed phenotypes with differences in the copy number of genes possibly involved in maltotriose utilization by yeast cells. Methods and Results: The analysis of maltose and maltotriose utilization by laboratory and industrial strains of the species Saccharomyces cerevisiae and Saccharomyces pastorianus (a natural S. cerevisiae/Saccharomyces bayanus hybrid) was carried out using microscale liquid cultivation, as well as in aerobic batch cultures. All strains utilize maltose efficiently as a carbon source, but three different phenotypes were observed for maltotriose utilization: efficient growth, slow/delayed growth and no growth. Through microarray karyotyping and pulsed-field gel electrophoresis blots, we analysed the copy number and localization of several maltose-related genes in selected S. cerevisiae strains. While most strains lacked the MPH2 and MPH3 transporter genes, almost all strains analysed had the AGT1 gene and increased copy number of MALx1 permeases. Conclusions: Our results showed that S. pastorianus yeast strains utilized maltotriose more efficiently than S. cerevisiae strains and highlighted the importance of the AGT1 gene for efficient maltotriose utilization by S. cerevisiae yeasts. Significance and Impact of the Study: Our results revealed new maltotriose utilization phenotypes, contributing to a better understanding of the metabolism of this carbon source for improved fermentation by Saccharomyces yeasts. Set of arrays organized by shared biological context, such as organism, tumors types, processes, etc.
Project description:Aims: We performed an analysis of maltotriose utilization by 52 Saccharomyces yeast strains able to ferment maltose efficiently and correlated the observed phenotypes with differences in the copy number of genes possibly involved in maltotriose utilization by yeast cells. Methods and Results: The analysis of maltose and maltotriose utilization by laboratory and industrial strains of the species Saccharomyces cerevisiae and Saccharomyces pastorianus (a natural S. cerevisiae/Saccharomyces bayanus hybrid) was carried out using microscale liquid cultivation, as well as in aerobic batch cultures. All strains utilize maltose efficiently as a carbon source, but three different phenotypes were observed for maltotriose utilization: efficient growth, slow/delayed growth and no growth. Through microarray karyotyping and pulsed-field gel electrophoresis blots, we analysed the copy number and localization of several maltose-related genes in selected S. cerevisiae strains. While most strains lacked the MPH2 and MPH3 transporter genes, almost all strains analysed had the AGT1 gene and increased copy number of MALx1 permeases. Conclusions: Our results showed that S. pastorianus yeast strains utilized maltotriose more efficiently than S. cerevisiae strains and highlighted the importance of the AGT1 gene for efficient maltotriose utilization by S. cerevisiae yeasts. Significance and Impact of the Study: Our results revealed new maltotriose utilization phenotypes, contributing to a better understanding of the metabolism of this carbon source for improved fermentation by Saccharomyces yeasts.
Project description:We study the genetics, including microarray karyotyping using comparative genomic hybridization to explore global changes in the genomic DNA, of four S. bayanus var uvarum strains related to traditional fermentations of very different sources comparing to the sequenced S. cerevisiae laboratory strain (S288C). Our final goal is to determine the adaptive evolution of properties of biotechnological interest in Saccharomyces yeasts. Many copy number variations (CNV) were observed, especially in genes associated to subtelomeric regions and transposon elements. Among the fermentation strains, differential CNV was observed in genes related to sugar transport and metabolism. An outstanding example of diverse CNV is the gen PUT1, involved in proline assimilation, which correlated with the adaptation of the strains to the presence of this nitrogen source in the media.
Project description:Here, we investigate the genetic mechanisms that underlie thermal specialization of closely-related vibrios isolated from coastal water at the Beaufort Inlet (Beaufort, NC, USA). This location experiences large seasonal temperature fluctuations (annual range of ~20°C), and a clear seasonal shift in vibrio diversity has been observed (Yung et al. 2015). This previous study suggested that the mechanisms of thermal adaptation apparently differ based on evolutionary timescale: shifts in the temperature of maximal growth occur between deeply branching clades but the shape of the thermal performance curve changes on shorter time scales (Yung et al. 2015). The observed thermal specialization in vibrio populations over relatively short evolutionary time scales indicates that few genes or cellular processes may contribute to the differences in thermal performance between populations. In order to understand the molecular mechanisms that underlie adaptation to local thermal regimes in environmental vibrio populations, we employ genomic and transcriptomic approaches to examine transcriptomic changes that occur within strains grown at their thermal optima and under heat and cold stress. Moreover, we compare two closely-related strains with different laboratory thermal preferences to identify in situ evolutionary responses to different thermal environments in genome content and alleles as well as gene expression.
Project description:RNA viruses adapt rapidly to new host environments by generating highly diverse genome sets, so-called “quasispecies”. Minor genetic variants promote their rapid adaptation allowing for emergence of drug-resistance or immune-escape mutants. Understanding these adaptation processes is highly relevant to assess the risk of cross-species transmission, and safety and efficacy of vaccines and antivirals. We hypothesized that genetic memory within a viral genome population facilitates rapid adaptation.