Project description:Boreal toads (Anaxyrus boreas boreas) of the Southern Rocky Mountain population are declining due to the introduction of the chytrid fungus Batrachochytrium dendrobatidis (Bd). Boreal toads in Colorado are generally susceptible to Bd infection, but some Bd-tolerant populations persist in parts of the Southern Rocky Mountain and broader Eastern boreal toad population. We conducted a Bd challenge with lab-reared sibling toads from Bd-susceptible Colorado and purportedly Bd-tolerant Utah populations and report on transcriptomic responses to Bd during late infection in skin and liver tissue. Fewer immune genes were expressed in response to Bd in Colorado toads, but with greater upregulation compared to Utah toads, indicating a dysregulated immune response. Signatures of Bd-tolerance in Utah toads included more moderate upregulation in immune gene expression and a significantly enriched suite of gene functions related to innate and adaptive immune responses. Our transcriptomic results support the notion that Utah toads are tolerant to Bd, rather than resistant, carrying Bd loads similar to Colorado yet having a unique transcriptomic profile and presenting minimal clinical signs of chytridiomycosis. We conclude that closely related populations have divergent transcriptomic responses to Bd with a dysregulated immune response in Bd-susceptible toads.
Project description:The vertical structuring of methanotrophic communities and its genetic controllers remain understudied in the water columns of oxygen-stratified lakes. Therefore, we used 16S rRNA gene sequencing to study the vertical stratification patterns of methanotrophs in two boreal lakes, Lake Kuivajärvi and Lake Lovojärvi. Furthermore, metagenomic analyses were performed to assess the genomic characteristics of methanotrophs in Lovojärvi and the previously studied Lake Alinen Mustajärvi. The methanotroph communities were vertically structured along the oxygen gradient. Alphaproteobacterial methanotrophs preferred oxic water layers, while Methylococcales methanotrophs, consisting of putative novel genera and species, thrived, especially at and below the oxic-anoxic interface and showed distinct depth variation patterns, which were not completely predictable by their taxonomic classification. Instead, genomic differences among Methylococcales methanotrophs explained their variable vertical depth patterns. Genes in clusters of orthologous groups (COG) categories L (replication, recombination and repair) and S (function unknown) were relatively high in metagenome-assembled genomes representing Methylococcales clearly thriving below the oxic-anoxic interface, suggesting genetic adaptations for increased stress tolerance enabling living in the hypoxic/anoxic conditions. By contrast, genes in COG category N (cell motility) were relatively high in metagenome-assembled genomes of Methylococcales thriving at the oxic-anoxic interface, which suggests genetic adaptations for increased motility at the vertically fluctuating oxic-anoxic interface.