Project description:Pot grown plants of Arabidopsis thaliana, Cardamine hirsuta, Cardamine pratensis, Rorippa palustris and Rorippa sylvestris where completely submerged under ambient light conditions. After 24 and 48 hours the shoots were harvested for expression analysis. Differential expression analysis, taking into account unsubmerged control plants revealed that the Rorippa genus had a pronounced down regulation of the cell cycle whereas the Cardamine had an attenuated response to submergence.
Project description:We used RNA-seq to profile gene expression changes during flg22 activated pattern-triggered immunity in multiple Brassicaceae including Capsella rubella, Cardamine hirsuta and Eutrema salsugineum as well as in multiple Arabidopsis thaliana accessions. This allows comparative transcriptomics within and across species to investigate the evolution of stress-responsive transcrption changes in these species.
Project description:Here we investigate the function of CUC1(CUP-SHAPED COTYLEDON1) in the diversification of leaf forms between simple-leaved Arabidopsis thaliana and compound-leaved Cardamine hirsuta. CUC transcription factors are conserved regulators in leaf margin dissection and leaflet formation. ChCUC1, ChCUC2 and ChCUC3 function redundantly and are required for the leaflet formation in C. hirsuta. Recently we discovered that ChCUC1 has species species-specific expression in young leaves of C.hirsuta. Moreover, interspecies gene transfer of ChCUC1 allele into A.thaliana is sufficient to increase leaf complexity. On this basis, we hypothesize that redeployment of ChCUC1 in leaves contributes to the formation of leaflets instead of serrations. However, the mechanism underlying ChCUC1 regulating cell division, cell polarity, cytoskeleton and thus leaf marginal patterning remains elusive. To this end, we make use of chromatin immunoprecipitation sequencing(ChIP-seq), transcriptomic, comparative genetics and advanced imaging approaches to identify the downstream regulating genes of ChCUC1.