Project description:The canine transmissible veneral tumour (CTVT) is one of the few known clonally transmissible cancers in nature. CTVT regresses spontaneously or after a single treatment with vincristine, however we know little of the mechanisms. To understand CTVT regression, we performed transcriptional analyses on serial biopsies of regressing and non-regressing CTVT, aiming to identify the likely drivers of CTVT regression.
Project description:The canine transmissible veneral tumour (CTVT) is one of the few known clonally transmissible cancers in nature. CTVT regresses spontaneously or after a single treatment with vincristine, however we know little of the mechanisms. To understand CTVT regression, we performed methylome analyses on serial biopsies of regressing and non-regressing CTVT, aiming to identify the likely drivers of CTVT regression.
Project description:The canine transmissible veneral tumour (CTVT) is one of the few known clonally transmissible cancers in nature. CTVT regresses spontaneously or after a single treatment with vincristine, however we know little of the mechanisms. To understand CTVT regression, we performed transcriptional analyses on serial biopsies of regressing and non-regressing CTVT, aiming to identify the likely drivers of CTVT regression.
Project description:The Tasmanian devil, a marsupial carnivore, is endangered due to the emergence of a clonally transmissible cancer known as Devil Facial Tumor Disease (DFTD). This fatal cancer is clonally derived and is an allograft transmitted between devils by biting. We performed a large-scale genetic analysis of DFTD with microsatellite genotyping, mitochondrial genome analysis, as well as deep sequencing of the DFTD transcriptome and miRNAs. These studies confirm that DFTD is a monophyletic clonally transmissible tumor, and suggest that the disease is of Schwann cell origin. On the basis of these results we have generated a diagnostic marker for DFTD, and identify a suite of genes of relevance to DFTD pathology and transmission. We provide a genomic dataset for the Tasmanian devil, which is applicable to cancer diagnosis, disease evolution and conservation biology. This submission contains only small RNA sequence data from this study.
Project description:The Tasmanian devil, a marsupial carnivore, is endangered due to the emergence of a clonally transmissible cancer known as Devil Facial Tumor Disease (DFTD). This fatal cancer is clonally derived and is an allograft transmitted between devils by biting. We performed a large-scale genetic analysis of DFTD with microsatellite genotyping, mitochondrial genome analysis, as well as deep sequencing of the DFTD transcriptome and miRNAs. These studies confirm that DFTD is a monophyletic clonally transmissible tumor, and suggest that the disease is of Schwann cell origin. On the basis of these results we have generated a diagnostic marker for DFTD, and identify a suite of genes of relevance to DFTD pathology and transmission. We provide a genomic dataset for the Tasmanian devil, which is applicable to cancer diagnosis, disease evolution and conservation biology. This submission contains only small RNA sequence data from this study. Small RNA (18 - 24 nt) sequences from 15 Tasmanian devil (Sarcophilus harrisii) tissue samples
Project description:Purpose: To investigate the critical role ER stress exhibit in cellular crosstalk between tumor cells and macrophages in the tumor microenvironment. We performed the two different polarized macrophages under ER stress and harvested the ER-stressed conditioned media. To figure out how two macrophage polarities generated conditioned media impact LLC tumor cells diversely, we use RNA-sequencing (RNA-seq) strategies to profile the deep-sequencing research and find the potential molecular mechanisms during the ER stress transmission from macrophages to tumor cells. The major differential influences the two macrophages proceeded were attribute to macrophages polarization characteristics, which instruct us to study the two polarized macrophages. Hence, we also performed RNA-sequencing during in vitro stimulation of ER stress inducer Tm in two polarized bone marrow derived macrophages. Methods: After different treatment, LLC tumor cells mRNA was extracted and LLC tumor cells transcriptome profiles were generated by deep sequencing, using Illumina. Under ER stress, the different polarized macrophages transcriptome profiles were also generated by deep sequencing, using Illumina. Results: Macrophages displayed different polarization characteristics could respond to ER stress differentially. Notably, GM-BMDMs were more susceptible to ER stress and facilitated the induction of proinflammatory signals, and M-BMDMs facilitate tumor growth, process, and metastasis. LLC cells exhibit different gene expression profiles in response to transferred ER stress from two polarized macrophage populations. Tumor cells that received transmissible ER stress from M2 macrophages has potential to facilitate the tumor survival, while transmissible ER stress from M1 macrophages could lead to more acute cell death and inflammation. Conclusion: Our study revealed that tumor cells could receive the transmissible ER stress from distinct macrophage populations with different extents of ER stress activation in the tumor microenvironment. The proinflammatory M1-like macrophages respond to ER stress more potently and transmit stronger ER stress to tumor cells. By analyzing the secreted components of two ER stressed macrophage populations, we identified that S100A8 and S100A9, which are dominantly secreted by M1-like macrophages, could lead to significant recipient tumor cell death in synergy with transferred ER stress.
Project description:Tumor tissues from canine lymphomas with accompanying survival and breed data. Gene expression analysis of samples representing common histologic subtypes of canine lymphoma.