Project description:Staphylococcus hominis is frequently isolated from human skin and we hypothesize that it may protect the cutaneous barrier from opportunistic pathogens. We determined that S. hominis makes six unique auto inducing peptide (AIP) signals that inhibit the major virulence factor accessory gene regulator (agr) quorum sensing system of Staphylococcus aureus. We solved and confirmed the structures of three novel AIP signals in conditioned media by mass spectrometry, then validated synthetic AIP activity against all S. aureus agr classes. Synthetic AIPs also inhibited the conserved agr system in a related species, Staphylococcus epidermidis. We determined the distribution of S. hominis agr types on healthy human skin and found S. hominis agr-I and agr-II were highly represented across subjects. Further, synthetic AIP-II was protective in vivo against S. aureus-associated dermonecrotic or epicutaneous injury. Together, these findings demonstrate that a ubiquitous colonizer of human skin has a fundamentally protective role against opportunistic damage.
Project description:The development of innovative antimicrobial materials is crucial in thwarting infectious diseases caused by microbes, as drug-resistant pathogens are increasing in both number and capacity to detoxify the antimicrobial drugs used today. An ideal antimicrobial material should inhibit a wide variety of bacteria in a short period of time, be less or not toxic to normal cells, and the fabrication or synthesis process should be cheap and easy. We report a one-step microwave-assisted hydrothermal synthesis of mixed composite CuxFeyOz (Fe2O3/Cu2O/CuO/CuFe2O) nanoparticles (NPs) as an excellent antimicrobial material. The 1 mg/mL CuxFeyOz NPs with the composition 36% CuFeO2, 28% Cu2O and 36% Fe2O3 have a general antimicrobial activity greater than 5 log reduction within 4 h against nine important human pathogenic bacteria (including drug-resistant bacteria as well as Gram-positive and Gram-negative strains). For example, they induced a >9 log reduction in Escherichia coli B viability after 15 min of incubation, and an ~8 log reduction in multidrug-resistant Klebsiella pneumoniae after 4 h incubation. Cytotoxicity tests against mouse fibroblast cells showed about 74% viability when exposed to 1 mg/mL CuxFeyOz NPs for 24 h, compared to the 20% viability for 1 mg/mL pure Cu2O NPs synthesized by the same method. These results show that the CuxFeyOz composite NPs are a highly efficient, low-toxicity and cheap antimicrobial material that has promising potential for applications in medical and food safety.
Project description:Staphylococcus hominis is frequently isolated from human skin, and we hypothesize that it may protect the cutaneous barrier from opportunistic pathogens. We determined that S. hominis makes six unique autoinducing peptide (AIP) signals that inhibit the major virulence factor accessory gene regulator (agr) quorum sensing system of Staphylococcus aureus. We solved and confirmed the structures of three novel AIP signals in conditioned medium by mass spectrometry and then validated synthetic AIP activity against all S. aureus agr classes. Synthetic AIPs also inhibited the conserved agr system in a related species, Staphylococcus epidermidis. We determined the distribution of S. hominis agr types on healthy human skin and found S. hominis agr-I and agr-II were highly represented across subjects. Further, synthetic AIP-II was protective in vivo against S. aureus-associated dermonecrotic or epicutaneous injury. Together, these findings demonstrate that a ubiquitous colonizer of human skin has a fundamentally protective role against opportunistic damage. IMPORTANCE Human skin is home to a variety of commensal bacteria, including many species of coagulase-negative staphylococci (CoNS). While it is well established that the microbiota as a whole maintains skin homeostasis and excludes pathogens (i.e., colonization resistance), relatively little is known about the unique contributions of individual CoNS species to these interactions. Staphylococcus hominis is the second most frequently isolated CoNS from healthy skin, and there is emerging evidence to suggest that it may play an important role in excluding pathogens, including Staphylococcus aureus, from colonizing or infecting the skin. Here, we identified that S. hominis makes 6 unique peptide inhibitors of the S. aureus global virulence factor regulation system (agr). Additionally, we found that one of these peptides can prevent topical or necrotic S. aureus skin injury in a mouse model. Our results demonstrate a specific and broadly protective role for this ubiquitous, yet underappreciated skin commensal.
Project description:Ten banana (Musa spp.) cultivars were studied for their antimicrobial properties. Three plant parts (corm, pseudostem and leaves) were collected separately and extracted with different solvents, viz., hexane, acetone, ethanol and water. The 50% inhibitory concentration (IC50) was evaluated using a broth microdilution assay. Eight human bacterial and one fungal pathogen were tested. Acetone and ethanol extract(s) often exhibited significant antimicrobial activity, while hexane extracts were less active. Aqueous extracts often showed microbial growth, possibly by endophytes. Leaf extracts were most active, followed by pseudostem, and corm was least active. All the tested banana cultivars were found to contain antimicrobials, as demonstrated by inhibition of selected human pathogens. However, cultivars such as Dole, Saba, Fougamou, Namwah Khom, Pelipita and Mbwazirume showed a broad-spectrum activity, inhibiting all tested pathogens. Other cultivars such as Petit Naine and Kluai Tiparot showed a narrow-spectrum activity, including antibiofilm activity against Candida albicans. Our results support the use of different parts of banana plants in traditional human medicine for infections, including diarrhea and dysentery, and some sexually transmitted diseases, as well as for packaging spoilable materials like food.
Project description:This study describes the successful synthesis of nitric oxide (NO)-releasing compounds with biodegradable and injectable properties and demonstrates that the kinetics of NO release vary according to the type of NO donor. The antimicrobial activity of NO-releasing compounds against three common periodontal pathogens, i.e., Aggregatibacter actinomycetemcomitans, Porphyromonas gingivalis, and Actinomyces israelii, was investigated using a susceptibility assay. Human gingival fibroblasts were treated with NO-releasing compounds at the minimum concentrations required for bacterial growth and cytotoxicity was evaluated using the MTT cell proliferation assay. Our results suggest that NO-releasing compounds can be used topically to treat both gram-negative and gram-positive periodontal pathogens. Comparison of the antimicrobial activity and cytotoxicity assay results between the NO-releasing compounds revealed that an NO donor comprising a macromolecule without surface charge, a lower instantaneous NO concentration, and an adequate supply of NO were associated with a strong bactericidal effect and low cytotoxicity. NO-releasing compounds with these properties may be suitable for treatment of periodontitis.
Project description:Protection against pathogens is a major function of the gut microbiota. Although bacterial natural products have emerged as crucial components of host-microbiota interactions, their exact role in microbiota-mediated protection is largely unexplored. We addressed this knowledge gap with the nematodeCaenorhabditis elegansand its microbiota isolatePseudomonas fluorescensMYb115 that is known to protect againstBacillus thuringiensis (Bt) infection. We find that MYb115-mediated protection depends on sphingolipids that are derived from an iterative type I polyketide synthase (PKS), thereby describing a noncanonical pathway of bacterial sphingolipid production. We provide evidence that MYb115-derived sphingolipids affectC. eleganstolerance to Bt infection by altering host sphingolipid metabolism. This work establishes sphingolipids as structural outputs of bacterial PKS and highlights the role of microbiota-derived sphingolipids in host protection against pathogens.
Project description:A large number of antimicrobial peptides depend on intramolecular disulfide bonds for their biological activity. However, the relative instability of disulfide bonds has limited the potential of some of these peptides to be developed into therapeutics. Conversely, peptides containing intramolecular (methyl)lanthionine-based bonds, lanthipeptides, are highly stable under a broader range of biological and physical conditions. Here, the class-II lanthipeptide synthetase CinM, from the cinnamycin gene cluster, was employed to create methyllanthionine stabilized analogues of disulfide-bond-containing antimicrobial peptides. The resulting analogues were subsequently modified in vitro by adding lipid tails of variable lengths through chemical addition. Finally, the created compounds were characterized by MIC tests against several relevant pathogens, killing assays, membrane permeability assays, and hemolysis assays. It was found that CinM could successfully install methyllanthionine bonds at the intended positions of the analogues and that the lipidated macrocyclic core peptides have bactericidal activity against tested Gram-positive and Gram-negative pathogenic bacteria. Additionally, fluorescence microscopy assays revealed that the lipidated compounds disrupt the bacterial membrane and lyse bacterial cells, hinting toward a potential mode of action. Notably, the semisynthesized macrocyclic lipo-lanthipeptides show low hemolytic activity. These results show that the methods developed here extend the toolbox for novel antimicrobial development and might enable the further development of novel compounds with killing activity against relevant pathogenic bacteria.
Project description:Vaginal infections continue to be a serious public health issue, and developing new approaches to address antibiotic-resistant pathogens is an urgent task. The dominant vaginal Lactobacillus species and their active metabolites (e.g., bacteriocins) have the potential to defeat pathogens and help individuals recover from disorders. Here, we describe for the first time a novel lanthipeptide, inecin L, a bacteriocin from Lactobacillus iners with posttranslational modifications. The biosynthetic genes of inecin L were actively transcribed in the vaginal environment. Inecin L was active against the prevailing vaginal pathogens, such as Gardnerella vaginalis and Streptococcus agalactiae, at nanomolar concentrations. We demonstrated that the antibacterial activity of inecin L was closely related to the N terminus and the positively charged His13 residue. In addition, inecin L was a bactericidal lanthipeptide that showed little effect on the cytoplasmic membrane but inhibited the cell wall biosynthesis. Thus, the present work characterizes a new antimicrobial lanthipeptide from a predominant species of the human vaginal microbiota. IMPORTANCE The human vaginal microbiota plays essential roles in preventing pathogenic bacteria, fungi, and viruses from invading. The dominant vaginal Lactobacillus species show great potential to be developed as probiotics. However, the molecular mechanisms (such as bioactive molecules and their modes of action) involved in the probiotic properties remain to be determined. Our work describes the first lanthipeptide molecule from the dominant Lactobacillus iners. Additionally, inecin L is the only lanthipeptide found among the vaginal lactobacilli thus far. Inecin L shows strong antimicrobial activity toward the prevalent vaginal pathogens and antibiotic-resistant strains, suggesting that inecin L is a potent antibacterial molecule for drug development. In addition, our results show that inecin L exhibits specific antibacterial activity related to the residues in the N-terminal region and ring A, which will contribute to structure-activity relationship studies in lacticin 481-like lanthipeptides.
Project description:Clinical trials have demonstrated the benefits of ibuprofen therapy in cystic fibrosis (CF) patients, an effect that is currently attributed to ibuprofen's anti-inflammatory properties. Yet, a few previous reports demonstrated an antimicrobial activity of ibuprofen as well, although none investigated its direct effects on the pathogens found in the CF lung, which is the focus of this work. Determination of ibuprofen's in vitro antimicrobial activity against Pseudomonas aeruginosa and Burkholderia species strains through measurements of the endpoint number of CFU and growth kinetics showed that ibuprofen reduced the growth rate and bacterial burden of the tested strains in a dose-dependent fashion. In an in vitroPseudomonas biofilm model, a reduction in the rate of biomass accumulation over 8 h of growth with ibuprofen treatment was observed. Next, an acute Pseudomonas pneumonia model was used to test this antimicrobial activity after the oral delivery of ibuprofen. Following intranasal inoculation, ibuprofen-treated mice exhibited lower CFU counts and improved survival compared with the control animals. Preliminary biodistribution studies performed after the delivery of ibuprofen to mice by aerosol demonstrated a rapid accumulation of ibuprofen in serum and minimum retention in lung tissue and bronchoalveolar lavage fluid. Therefore, ibuprofen-encapsulated polymeric nanoparticles (Ibu-NPs) were formulated to improve the pharmacokinetic profile. Ibu-NPs formulated for aerosol delivery inhibited the growth of P. aeruginosa in vitro and may provide a convenient dosing method. These results provide an additional explanation for the previously observed therapeutic effects of ibuprofen in CF patients and further strengthen the argument for its use by these patients.