Project description:In this paper, we present the first comparative transcriptome profiles with ARR treated and control of R. palustris. Moreover, putative two ARR biotransformation mechanisms in R. palustris were first given. All of these provided a valuable genomic resource for further studying molecular mechanism of biotransformation and genetic modification of R. palustris.
Project description:Transcriptional profiling of Rhodopseudomonas palustris (R. palustris) comparing cbbT1 over-expressing strain with cbbT2 over-expressing strain. Goal was to discriminate the molecular mechanisms between transketolase I (cbbT1) and transketolase II (cbbT2). R.palustris is a purple non-sulfur anoxygenic phototrophic bacterium and transketolase (cbbT1 and cbbT2) is a key enzyme involved in the CBB cycle. Here, we investogated the functions of transketolase isoforms I (cbbT1) and II (cbbT2) in R. palustris through transcriptional profiling and other functional assays.
Project description:The redox-sensing two-component signal transduction system, RegSR, in Rhodopseudomonas palustris has been shown to regulate an uptake hydrogenase in response to varying cellular redox states; however, its role is still largely undefined. Here, we used RNA sequencing to compare gene expression patterns in wild type R. palustris strain CGA010 to a ΔregSR derivative, CGA2023, under varying metabolic conditions. Growth conditions were chosen to utilize the different metabolic capabilites of R. palustris and, thus, present a variety of different redox challenges to the cell.
Project description:To address the question of how photosynthetic bacterium Rhodopseudomonas palustris metabolize lignin derived compound p-coumarate, transcriptomics and quantitative proteomics were combined to characterize gene expression profiles at both the mRNA level and protein level in Rhodopseudomonas palustris grown with succinate, benzoate, and p-coumarate as the carbon source. Keywords: Comparison of transcriptome profiles
Project description:Peripheral light harvesting (LH) antenna complexes have been studied extensively in the purple nonsulfur bacterium Rhodopseudomonas palustris because it produces different types of LH complexes under high light intensities (LH2 complex) and low light intensities (LH3 and LH4 complex). The ability of R. palustris to alter its peripheral LH complexes in response to changes in light intensity is attributed to the multiple operons that encode the a and b peptides that make up these complexes, whose expression is affected by light intensity, light quality, and oxygen tension. However, low resolution structures, amino acid similarities between the complexes, and a lack of transcriptional analysis made it difficult to determine the LH complexes composition and functions under different light intensities. It was also unclear how much diversity of the R. palustris LH complexes exists in nature.Results: To gain insight into the composition of the LH complexes, their function under high light intensities and low light intensities, and their prevalence in the environment we undertook an integrative genomics approach using 15 closely related R. palustris strains isolated from the environment and 5 R. palustris ecotypes whose genomes have been sequenced. We sequenced the genomes for the 15 closely related strains and using RNA-seq carried out transcriptomic analysis on all 20 strains grown under high light intensity and low light intensity. We were able to determine that even closely related R. palustris strains had differences in their pucBA gene content and expression, even under the same growth conditions. We also found that the LH2 complex could compensate for the lack of an LH4 complex under LL intensities but not under extremely LL intensities. Conclusions: This is the first time an integrative genomics approach has been used to study light harvesting in the environment. The variation observed in LH gene composition and expression in environmental isolates of R. palustris likely reflects how these strains have adapted to specific light conditions in the environment. We have also shown that there is redundancy between some of the LH complexes under certain light intensities, which may partially explain why multiple operons encoding LH complexes have evolved and been maintained in R. palustris.
Project description:To address the question of how photosynthetic bacterium Rhodopseudomonas palustris metabolize lignin derived compound p-coumarate, transcriptomics and quantitative proteomics were combined to characterize gene expression profiles at both the mRNA level and protein level in Rhodopseudomonas palustris grown with succinate, benzoate, and p-coumarate as the carbon source. Transcriptome profiles among Rhodopseudomonas palustris cells grown with succinate, benzoate, and p-coumarate as the carbon source were compared.
Project description:Characterization of post-translational modification of nitrogenase in Rhodopseudomonas palustris strains that produce hydrogen gas constitutively.
Project description:Transcriptional profiling of Rhodopseudomonas palustris (R. palustris) comparing cbbT1 over-expressing strain with cbbT2 over-expressing strain. Goal was to discriminate the molecular mechanisms between transketolase I (cbbT1) and transketolase II (cbbT2). R.palustris is a purple non-sulfur anoxygenic phototrophic bacterium and transketolase (cbbT1 and cbbT2) is a key enzyme involved in the CBB cycle. Here, we investogated the functions of transketolase isoforms I (cbbT1) and II (cbbT2) in R. palustris through transcriptional profiling and other functional assays. Four-condition experiment, cbbT1 over-expressing cells, cbbT2 over-expressing cells, Negative control strain with empty plasmid, Wild type strain.
Project description:Peripheral light harvesting (LH) antenna complexes have been studied extensively in the purple nonsulfur bacterium Rhodopseudomonas palustris because it produces different types of LH complexes under high light intensities (LH2 complex) and low light intensities (LH3 and LH4 complex). The ability of R. palustris to alter its peripheral LH complexes in response to changes in light intensity is attributed to the multiple operons that encode the a and b peptides that make up these complexes, whose expression is affected by light intensity, light quality, and oxygen tension. However, low resolution structures, amino acid similarities between the complexes, and a lack of transcriptional analysis made it difficult to determine the LH complexes composition and functions under different light intensities. It was also unclear how much diversity of the R. palustris LH complexes exists in nature.Results: To gain insight into the composition of the LH complexes, their function under high light intensities and low light intensities, and their prevalence in the environment we undertook an integrative genomics approach using 15 closely related R. palustris strains isolated from the environment and 5 R. palustris ecotypes whose genomes have been sequenced. We sequenced the genomes for the 15 closely related strains and using RNA-seq carried out transcriptomic analysis on all 20 strains grown under high light intensity and low light intensity. We were able to determine that even closely related R. palustris strains had differences in their pucBA gene content and expression, even under the same growth conditions. We also found that the LH2 complex could compensate for the lack of an LH4 complex under LL intensities but not under extremely LL intensities. Conclusions: This is the first time an integrative genomics approach has been used to study light harvesting in the environment. The variation observed in LH gene composition and expression in environmental isolates of R. palustris likely reflects how these strains have adapted to specific light conditions in the environment. We have also shown that there is redundancy between some of the LH complexes under certain light intensities, which may partially explain why multiple operons encoding LH complexes have evolved and been maintained in R. palustris. Examing the variation observed in LH gene composition and expression in various environmental isolates