Project description:Genomes and transcriptomes of non-model organisms can be analyzed using next-generation sequencing technologies, but de-novo sequencing and annotating a full eukaryotic genome is still challenging. So, -omics experimentation with non-model organisms requires a suite of technologies to obtain reliable results in a cost-effective manner. Here, a novel method for microarray-based genome analysis is presented which is especially suitable for non-model organisms. We show that it is useful for complementing regular aCGH analyses and for evaluating transcriptome next-generation sequencing reads. The principle of the method is straightforward: feature intensities obtained after hybridizing the test genome are compared with the feature intensities of a control hybridization. The control hybridization is performed with negative control probes (no targets in the control sample), and with positive control probes (with targets in the control sample). The method has in principle a resolution of a single probe and it does not depend on the structural information of a reference genome: the genomic ordering of probe targets is irrelevant. In a test, analyzing the genome content of a sequenced bacterial strain: Staphylococcus aureus MRSA252, this approach proved to be successful demonstrated by receiver operating characteristic area under the curve values larger than 0.9995.
Project description:Genomes and transcriptomes of non-model organisms can be analyzed using next-generation sequencing technologies, but de-novo sequencing and annotating a full eukaryotic genome is still challenging. So, -omics experimentation with non-model organisms requires a suite of technologies to obtain reliable results in a cost-effective manner. Here, a novel method for microarray-based genome analysis is presented which is especially suitable for non-model organisms. We show that it is useful for complementing regular aCGH analyses and for evaluating transcriptome next-generation sequencing reads. The principle of the method is straightforward: feature intensities obtained after hybridizing the test genome are compared with the feature intensities of a control hybridization. The control hybridization is performed with negative control probes (no targets in the control sample), and with positive control probes (with targets in the control sample). The method has in principle a resolution of a single probe and it does not depend on the structural information of a reference genome: the genomic ordering of probe targets is irrelevant. In a test, analyzing the genome content of a sequenced bacterial strain: Staphylococcus aureus MRSA252, this approach proved to be successful demonstrated by receiver operating characteristic area under the curve values larger than 0.9995.
Project description:Genomes and transcriptomes of non-model organisms can be analyzed using next-generation sequencing technologies, but de-novo sequencing and annotating a full eukaryotic genome is still challenging. So, -omics experimentation with non-model organisms requires a suite of technologies to obtain reliable results in a cost-effective manner. Here, a novel method for microarray-based genome analysis is presented which is especially suitable for non-model organisms. We show that it is useful for complementing regular aCGH analyses and for evaluating transcriptome next-generation sequencing reads. The principle of the method is straightforward: feature intensities obtained after hybridizing the test genome are compared with the feature intensities of a control hybridization. The control hybridization is performed with negative control probes (no targets in the control sample), and with positive control probes (with targets in the control sample). The method has in principle a resolution of a single probe and it does not depend on the structural information of a reference genome: the genomic ordering of probe targets is irrelevant. In a test, analyzing the genome content of a sequenced bacterial strain: Staphylococcus aureus MRSA252, this approach proved to be successful demonstrated by receiver operating characteristic area under the curve values larger than 0.9995. DNA from eleven Staphylococcus aureus strains was extracted in three replicates, fragmented, and hybridized onto the S. aureus multistrain microarray. DNA from MRSA252 was used as common reference, but this channel was omitted in further analyses.
Project description:Genomes and transcriptomes of non-model organisms can be analyzed using next-generation sequencing technologies, but de-novo sequencing and annotating a full eukaryotic genome is still challenging. So, -omics experimentation with non-model organisms requires a suite of technologies to obtain reliable results in a cost-effective manner. Here, a novel method for microarray-based genome analysis is presented which is especially suitable for non-model organisms. We show that it is useful for complementing regular aCGH analyses and for evaluating transcriptome next-generation sequencing reads. The principle of the method is straightforward: feature intensities obtained after hybridizing the test genome are compared with the feature intensities of a control hybridization. The control hybridization is performed with negative control probes (no targets in the control sample), and with positive control probes (with targets in the control sample). The method has in principle a resolution of a single probe and it does not depend on the structural information of a reference genome: the genomic ordering of probe targets is irrelevant. In a test, analyzing the genome content of a sequenced bacterial strain: Staphylococcus aureus MRSA252, this approach proved to be successful demonstrated by receiver operating characteristic area under the curve values larger than 0.9995. DNA from twelve Danio rerio individuals was extracted, fragmented, and hybridized onto the D. rerio microarray. DNA from the pool was used as common reference, but this channel was omitted in further analyses.
Project description:Identification of patterns of sex-biased expression in (shared) vegetative tissues before and after sexual maturity in Mercurialis annua
Project description:We developed a software package STITCH (https://github.com/snijderlab/stitch) to perform template-based assembly of de novo peptide reads from antibody samples. As a test case we generated de novo peptide reads from protein G purified whole IgG from COVID-19 patients.
Project description:A selection experiment has been set that selects females Mercurialis annua for increased allocation in male functions by depriving selected populations of all males. This resulted in a drastic phenotypic shift in sex allocation in females of the selected lines. The present RNA sequencing of control and selected lines after four generations of selection permits us to track the expression levels of previously identified male- and female-biased genes in females of the selected lines.