Project description:Comparison of faecal flora of three healthy individuals and a patient suffering from Ulcerative Colitis during disease and remission states. Faecal samples were taken and frozen at -80 within one hour.
Project description:The intestinal microbiota plays a key role in shaping host homeostasis by regulating metabolism, immune responses and behaviour. Its dysregulation has been associated with metabolic, immune and neuropsychiatric disorders and is accompanied by changes in bacterial metabolic regulation. Although proteomic is well suited for analysis of individual microbes, metaproteomic of faecal samples is challenging due to the physical structure of the sample, presence of contaminating host proteins and coexistence of hundreds of species. Furthermore, there is a lack of consensus regarding preparation of faecal samples, as well as downstream bioinformatic analyses following metaproteomic data acquisition. Here we assess sample preparation and data analysis strategies applied to mouse faeces in a typical LC-MS/MS metaproteomic experiment. We show that low speed centrifugation (LSC) of faecal samples leads to high protein identification rates but possibly enriched for a subset of taxa. During database search, two-step search strategies led to dramatic and underestimated accumulation of false positive protein identifications. Regarding taxonomic annotation, the MS-identified peptides of unknown origin were annotated with highest sensitivity and specificity using the Unipept software. Comparison of matching metaproteome and metagenome data revealed a positive correlation between protein and gene abundances. Notably, nearly all functional categories of detected protein groups were differentially abundant in the metaproteome compared to what would be expected from the metagenome, highlighting the need to perform metaproteomic when studying complex microbiome samples.
Project description:In this randomised placebo-controlled trial, irritable bowel syndrome (IBS) patients were treated with faecal material from a healthy donor (n=8, allogenic FMT) or with their own faecal microbiota (n=8, autologous FMT). The faecal transplant was administered by whole colonoscopy into the caecum (30 g of stool in 150 ml sterile saline). Two weeks before the FMT (baseline) as well as two and eight weeks after the FMT, the participants underwent a sigmoidoscopy, and biopsies were collected at a standardised location (20-25 cm from the anal verge at the crossing with the arteria iliaca communis) from an uncleansed sigmoid. In patients treated with allogenic FMT, predominantly immune response-related genes sets were induced, with the strongest response two weeks after FMT. In patients treated with autologous FMT, predominantly metabolism-related gene sets were affected.
Project description:RNAseq and LC/MS metabolomics analysis of C. difficile strain 630 grown in BHIS media with 50% (vol/vol) faecal water added, compared with control BHIS containing only the additional PBS used for prep of Faecal water. Cells grown in biological triplicates to late log phase (T=6h) prior to harvest. Goal was to determine changes in gene expression caused by exposure to Faecal water, and changes in the metabolite profile of faecal water containing medium when incubated with actively growing C. difficile cells
Project description:We examined the growth curve, cell cycle, apoptosis and glycolysis of donkey, horse and mule adult fibroblasts (DAFs, HAFs and MAFs), which indicated there are differences in cell proliferation and metabolism. We also derived mule, donkey and horse iPSCs from their respective adult fibroblasts by piggyBac transposition, and we found the induced reprogramming efficiency of mule iPSCs was significantly higher than donkey and horse iPSCs (78.3% vs 58.2% vs 47.9%). miPSCs, diPSCs and hiPSCs all expressed high levels of key endogenous pluripotency genes such as Oct4, Sox2 and Nanog, propagated robustly in single cell passaging and miPSCs were found to proliferated significantly faster than diPSCs and hiPSCs. Furthermore, miPSCs/MAFs clustered closer to diPSCs/DAFs than to hiPSCs/HAFs by RNA-seq. The establishment of miPSCs provide unique experimental materials for further investigation of understanding the “heterosis” and reproductive isolation during speciation.
Project description:The current treatment for Celiac Disease (CD) is adhering to a gluten-free diet (GFD), although its long-term molecular effects are still undescribed. New molecular features detectable in faecal samples may improve and facilitate non-invasive clinical management of CD on GFD. For this purpose, faecal small non-coding RNAs (sncRNAs) and gut microbiome profiles were concomitantly explored in CD subjects in relation to strict (or not) GFD adherence over time. In the present observational study, we performed small RNA and shotgun metagenomic sequencing in stool from 63 treated CD (tCD) subjects and 66 sex- and age-matched healthy controls. tCD included 51 individuals on strict GFD and with negative transglutaminase (TG) serology (tCD-TG-) and 12 symptomatic with not strict/short-time of GFD adherence and positive TG serology (tCD-TG+). Samples from additional 40 adult healthy individuals and from a cohort of 19 untreated paediatric CD subjects and 19 sex/age matched controls were analyzed to further test the outcomes. Several miRNA, other sncRNA (piRNA and tRNA) and microbiota profiles were altered in tCD subjects(adj.p<0.05). Findings were validated in one external group of controls. In tCD-TG-, GFD duration correlated with five miRNA levels (p<0.05): for miR-4533-3p and miR-2681-3p, the longer the diet adherence, the less the expression differed from controls. tCD-TG+ and untreated paediatric CD patients showed a similar miRNA dysregulation. Immune-response, trans-membrane transport and cell death pathways were enriched in targets of identified miRNAs. Bifidobacterium longum, Ruminococcus bicirculans and Haemophilus parainfluenzae abundances shifted (adj. p<0.05) with a progressive reduction of denitrification pathways with GFD length. Integrative analysis highlighted 121 miRNA-bacterial relationships (adj.p<0.05). Specific faecal sncRNA and microbial patterns characterise CD subjects on GFD, reflecting either the long-term effects or the gut inflammatory status, in case of a not strict/short-time adherence. Our findings suggest novel host-microbial interplays and could help the discovery of biomarkers for the clinical monitoring of GFD over time.