Project description:Typically much smaller in number than their mainland counterparts, island populations are ideal systems to investigate genetic threats to small populations. The Svalbard reindeer (Rangifer tarandus platyrhynchus) is an endemic subspecies that colonized the Svalbard archipelago ca. 6,000-8,000 years ago and now shows numerous physiological and morphological adaptations to its arctic habitat. Here, we report a de-novo chromosome-level assembly for Svalbard reindeer and analyze 133 reindeer genomes spanning Svalbard and most of the species' Holarctic range, to examine the genomic consequences of long-term isolation and small population size in this insular subspecies. Empirical data, demographic reconstructions, and forward simulations show that long-term isolation and high inbreeding levels may have facilitated the reduction of highly deleterious-and to a lesser extent, moderately deleterious-variation. Our study indicates that long-term reduced genetic diversity did not preclude local adaptation to the High Arctic, suggesting that even severely bottlenecked populations can retain evolutionary potential.
Project description:Extreme climate events often cause population crashes but are difficult to account for in population-dynamic studies. Especially in long-lived animals, density dependence and demography may induce lagged impacts of perturbations on population growth. In Arctic ungulates, extreme rain-on-snow and ice-locked pastures have led to severe population crashes, indicating that increasingly frequent rain-on-snow events could destabilize populations. Here, using empirically parameterized, stochastic population models for High-Arctic wild reindeer, we show that more frequent rain-on-snow events actually reduce extinction risk and stabilize population dynamics due to interactions with age structure and density dependence. Extreme rain-on-snow events mainly suppress vital rates of vulnerable ages at high population densities, resulting in a crash and a new population state with resilient ages and reduced population sensitivity to subsequent icy winters. Thus, observed responses to single extreme events are poor predictors of population dynamics and persistence because internal density-dependent feedbacks act as a buffer against more frequent events.
Project description:Faecal sample basic bacterial community structure analysis of 16S rRNA,for small population of the Svalbard reindeer from Hornsund fjord.
Project description:A small, shed antler fragment of a reindeer from Sjælland, Denmark has been dated to the Mid-Holocene, ca., 4700 cal B.C. Reindeer was an important component of the Lateglacial fauna in Denmark, and the species survived for ca. 1400 years into the Holocene. However, we consider it highly unlikely that this species inhabited Denmark during the Mid-Holocene, when dense forests characterized the vegetation and summer temperatures were somewhat higher than at present. We suggest that the reindeer antler came to Sjælland from Norway or Sweden as a result of trade, perhaps involving flint.