Project description:This data is from healthy skin tissue and has been used as a reference to compare diseased datasets. The dataset is from experiments of spatial transcriptomics.
Project description:Spatial organization of different cell types within prenatal skin across various anatomical sites is not well understood. To address this, here we have generated spatial transcriptomics data from prenatal facial and abdominal skin obtained from a donor at 10 post conception weeks. This in combination with our prenatal skin scRNA-seq dataset has helped us map the location of various identified cell types.
Project description:Our understanding of how human skin cells differ according to anatomical site and tumour formation is limited. To address this we have created a multi-scale spatial atlas of healthy skin and basal cell carcinoma (BCC), incorporating in vivo optical coherence tomography, single cell RNA sequencing, spatial global transcriptional profiling and in situ sequencing. Computational spatial deconvolution and projection revealed the localisation of distinct cell populations to specific tissue contexts. Although cell populations were conserved between healthy anatomical sites and in BCC, mesenchymal cell populations including fibroblasts and pericytes retained signatures of developmental origin. Spatial profiling and in silico lineage tracing support a hair follicle origin for BCC and demonstrate that cancer-associated fibroblasts are an expansion of a POSTN+ subpopulation associated with hair follicles in healthy skin. RGS5+ pericytes are also expanded in BCC suggesting a role in vascular remodelling. We propose that the identity of mesenchymal cell populations is regulated by signals emanating from adjacent structures and that these signals are repurposed to promote the expansion of skin cancer stroma. The resource we have created is publicly available in an interactive format for the research community.
Project description:Our understanding of how human skin cells differ according to body site and tumour formation is limited. To address this we have created a multi-scale spatial atlas of healthy skin and basal cell carcinoma (BCC), incorporating in vivo optical coherence tomography, single cell RNA sequencing, spatial global transcriptional profiling and in situ sequencing. Computational spatial deconvolution and projection revealed the localisation of distinct cell populations to specific tissue contexts. Although cell populations were conserved between healthy anatomical sites and in BCC, mesenchymal cell populations including fibroblasts and pericytes retain signatures of developmental origin. Spatial profiling and in silico lineage tracing support a hair follicle origin for BCC and demonstrate that cancer-associated fibroblasts are an expansion of a POSTN+ subpopulation associated with hair follicles in healthy skin. RGS5+ pericytes are also expanded in BCC suggesting a role in vascular remodelling during cancer neovascularization. Our findings suggest that the identity of mesenchymal cell populations is regulated by signals emanating from adjacent structures and that these signals are repurposed to promote the expansion of skin cancer stroma. The resource we have created is publicly available in an interactive format for the research community.
Project description:To test if cell states within the endometrium are spatially organized, we performed spatial transcriptomics on 8 mid-luteal phase superficial endometrial biopsies.
Project description:CTCLs are a group of non-Hodgkin lymphomas, with non-aggressive forms (Mycosis fungoides (MF)) initially presenting with features of cutaneous eczema or psoriasis, posing a challenge for clinical and histological diagnosis. Using spatial transcriptomics, we hope to delineate the molecular signatures of CTCL to provide novel avenues for diagnostics and therapies.