Project description:We used the nanopore Cas9 targeted sequencing (nCATS) strategy to specifically sequence 125 L1HS-containing loci in parallel and measure their DNA methylation levels using nanopore long-read sequencing. Each targeted locus is sequenced at high coverage (~45X) with unambiguously mapped reads spanning the entire L1 element, as well as its flanking sequences over several kilobases. The genome-wide profile of L1 methylation was also assessed by bs-ATLAS-seq in the same cell lines (E-MTAB-10895).
Project description:Genomic DNA from 55 wild type Col x Ler F2 individuals was extracted using the CTAB method. Equal amounts of DNA from these 55 plants were pooled into two groups (pool 1 = 4 plants; pool 2 = 51 plants), and nine micrograms of gDNA from each pool was used to generate Nanopore sequencing libraries with the Ligation Sequencing Kit V14 (Nanopore, SQK-LSK114). The libraries were sequenced independently using PromethION (BGI, Hong Kong).
Project description:We sequenced DNA from a bulk of Col x Ler F2 hybrid plants (WT and recq4) using Nanopore long-read sequencing and identified crossover sites with COmapper. For nanopore sequencing of gDNA from 1,000 pooled seedlings, 10-day-old seedlings were ground in liquid nitrogen using a mortar and pestle. The ground tissue was resuspended in four volumes of CTAB buffer (1% [w/v] CTAB, 50 mM Tris-HCl pH 8.0, 0.7 M NaCl, 10 mM EDTA) and incubated at 65°C for 30 min. Following chloroform extraction, isopropanol precipitation and removal of RNAs as above, the gDNA pellet was resuspended in 150 μl TE (10 mM Tris-HCl pH 8.0, 0.1 mM EDTA) buffer and gDNA was quantified using a Qubit dsDNA Broad Range assay kit (Thermo Fisher, Q32853). Nine micrograms of gDNA from pollen or seedlings was used to construct a nanopore long-read sequencing library using a Ligation Sequencing Kit V14 (Nanopore, SQK-LSK114). The libraries were sequenced using a PromethION platform (BGI, Hong Kong).
Project description:Transposon insertion site sequencing (TIS) is a powerful method for associating genotype to phenotype. However, all TIS methods described to date use short nucleotide sequence reads which cannot uniquely determine the locations of transposon insertions within repeating genomic sequences where the repeat units are longer than the sequence read length. To overcome this limitation, we have developed a TIS method using Oxford Nanopore sequencing technology that generates and uses long nucleotide sequence reads; we have called this method LoRTIS (Long Read Transposon Insertion-site Sequencing). This experiment data contains sequence files generated using Nanopore and Illumina platforms. Biotin1308.fastq.gz and Biotin2508.fastq.gz are fastq files generated from nanopore technology. Rep1-Tn.fastq.gz and Rep1-Tn.fastq.gz are fastq files generated using Illumina platform. In this study, we have compared the efficiency of two methods in identification of transposon insertion sites.
Project description:We sequenced DNA from the leaves of ten Col x Ler F1 hybrid plants (WT and recq4) using Nanopore long-read sequencing and identified crossover sites with COmapper. These data were used as a negative control for COmapper, as no crossover sites were expected to be detected. For nanopore sequencing of gDNA from leaves, leaves from 10 5-week-old plants were ground in liquid nitrogen using a mortar and pestle. The ground tissue was resuspended in four volumes of CTAB buffer (1% [w/v] CTAB, 50 mM Tris-HCl pH 8.0, 0.7 M NaCl, 10 mM EDTA) and incubated at 65°C for 30 min. Following chloroform extraction, isopropanol precipitation and removal of RNAs as above, the gDNA pellet was resuspended in 150 μl TE (10 mM Tris-HCl pH 8.0, 0.1 mM EDTA) buffer and gDNA was quantified using a Qubit dsDNA Broad Range assay kit (Thermo Fisher, Q32853). Nine micrograms of gDNA from pollen or seedlings was used to construct a nanopore long-read sequencing library using a Ligation Sequencing Kit V14 (Nanopore, SQK-LSK114). The libraries were sequenced using a PromethION platform (BGI, Hong Kong).
Project description:This dataset contains Xdrop followed by oxford nanopore long read sequencing performed in target tRNA gene deletion (t8) and intergenic region deletion (i50) clones in HepG2 . By applying de novo assembly based approach to Xdrop-LRS data, we identified Cas9-induced on-target genomic alteration.
Project description:This dataset contains Xdrop followed by oxford nanopore long read sequencing performed in target tRNA gene deletion clones in HAP1 (t72) and HepG2 (t15). By applying de novo assembly based approach to Xdrop-LRS data, we identified Cas9-induced on-target genomic alteration.