Project description:Plant growth-promoting rhizobacteria (PGPR) are soil microbes that can promote plant growth and/or increase plant resistance to one or multiple stress conditions. These natural resources are environmentally friendly tools for reducing the use of chemical fertilizers and pesticides and for improving the nutritional quality of plants, including pharmacological metabolites. Coriander (Coriandrum sativumL.), commonly known as cilantro or Chinese parsley, is a worldwide culinary and medicinal plant with both nutritional and medicinal properties. Little is known about how PGPR may promote plant growth or affect metabolite profiles in coriander. Here, by usingAeromonassp. H1 that is a PGPR strain, we investigate how coriander yield and quality could be affected by PGPR with transcriptome insights.
Project description:Plant growth-promoting rhizobacteria (PGPR) are soil beneficial microorganisms that colonize plant roots for nutritional purposes and accordingly benefit plants by increasing plant growth or reducing disease. But it still remains unclear which mechanisms or pathways are involved in the interactions between PGPR and plants. To understand the complex plant-PGPR interactions, the changes in the transcriptome of typical PGPR standard Bacillus subtilis in responding to rice seedlings were analyzed.
Project description:Plant growth-promoting rhizobacteria (PGPR) are soil beneficial microorganisms that colonize plant roots for nutritional purposes and accordingly benefit plants by increasing plant growth or reducing disease. But it still remains unclear which mechanisms or pathways are involved in the interactions between PGPR and plants. To understand the complex plant-PGPR interactions, the changes in the transcriptome of typical PGPR standard Bacillus subtilis in responding to rice seedlings were analyzed. We compared and anylyzed the transcriptome changes of the bacteria Bacillus subtilis OKB105 in response to rice seedings for 2 h. Total RNA was extracted and Random priming cDNA synthesis, cDNA fragmentation and terminal labeling with biotinylated GeneChip DNA labeling reagent, and hybridization to the Affymetrix GeneChip Bacillus subtilis Genome Array.