Project description:Plant growth-promoting rhizobacteria (PGPR) are soil beneficial microorganisms that colonize plant roots for nutritional purposes and accordingly benefit plants by increasing plant growth or reducing disease. But it still remains unclear which mechanisms or pathways are involved in the interactions between PGPR and plants. To understand the complex plant-PGPR interactions, the changes in the transcriptome of typical PGPR standard Bacillus subtilis in responding to rice seedlings were analyzed.
Project description:Plant growth-promoting rhizobacteria (PGPR) are soil microbes that can promote plant growth and/or increase plant resistance to one or multiple stress conditions. These natural resources are environmentally friendly tools for reducing the use of chemical fertilizers and pesticides and for improving the nutritional quality of plants, including pharmacological metabolites. Coriander (Coriandrum sativumL.), commonly known as cilantro or Chinese parsley, is a worldwide culinary and medicinal plant with both nutritional and medicinal properties. Little is known about how PGPR may promote plant growth or affect metabolite profiles in coriander. Here, by usingAeromonassp. H1 that is a PGPR strain, we investigate how coriander yield and quality could be affected by PGPR with transcriptome insights.
Project description:Plant growth-promoting rhizobacteria (PGPR) are soil beneficial microorganisms that colonize plant roots for nutritional purposes and accordingly benefit plants by increasing plant growth or reducing disease. But it still remains unclear which mechanisms or pathways are involved in the interactions between PGPR and plants. To understand the complex plant-PGPR interactions, the changes in the transcriptome of typical PGPR standard Bacillus subtilis in responding to rice seedlings were analyzed. We compared and anylyzed the transcriptome changes of the bacteria Bacillus subtilis OKB105 in response to rice seedings for 2 h. Total RNA was extracted and Random priming cDNA synthesis, cDNA fragmentation and terminal labeling with biotinylated GeneChip DNA labeling reagent, and hybridization to the Affymetrix GeneChip Bacillus subtilis Genome Array.
Project description:pc_arcole - arcole / pgpr - What are the genes implicated in the efficiency of nitrogenous nutrition when A.thaliana is inoculated with a PGPR (Plant Growth Promoting Rhizobacteria)? - A.thaliana seeds germinated and grew during ten days until they were transfered in 6 different media: 0,5 mM nitrate with PGPR (Plant Growth Promoting Rhizobacteria), 0,5mM nitrate without PGPR, 2mM nitrate with PGPR, 2mM nitrate without PGPR, 20 mM nitrate with PGPR, 20 mM nitrate without PGPR. Young plantlets grew 7 days in these new mediums. Shoots are collected in eppendorf.
Project description:pc_arcole - arcole / pgpr - What are the genes implicated in the efficiency of nitrogenous nutrition when A.thaliana is inoculated with a PGPR (Plant Growth Promoting Rhizobacteria)? - A.thaliana seeds germinated and grew during ten days until they were transfered in 6 different media: 0,5 mM nitrate with PGPR (Plant Growth Promoting Rhizobacteria), 0,5mM nitrate without PGPR, 2mM nitrate with PGPR, 2mM nitrate without PGPR, 20 mM nitrate with PGPR, 20 mM nitrate without PGPR. Young plantlets grew 7 days in these new mediums. Shoots are collected in eppendorf. 6 dye-swap - dose response,organ comparison,treated vs untreated comparison
Project description:ra04-07_pgpr - profiling of the pgpr induced systemic resistance (isr) - Experiment 1 : Which genes are up- or down-regulated in Arabidopsis thaliana cultivated in vitro with increased lateral root development in response to Phyllobacterium STM196 inoculation. Experiment 2 : Which genes are up- or down-regulated during the ISR triggered by a rhizobacteria, in comparison with those affected by a pathogenic interaction. Experiment 3 : which genes are specifically induced or repressed in Arabidopsis thaliana by inoculation of the soil with a PGPR vs a bacteria that has the ability to trigger nodule formation in a Legume. - Seeds were sawn on 0.8% (W/V) agar mineral medium (see below). 4 days after storage in the dark at 4degreeC, seedling were cultivated 6 days in a growth chamber (16 h daily, 20-22degreeC) and then transferred on soil inoculated or not with 107 cfu.g-1 of Bradyrhizobium strain ORS278. Three weeks later, 3 leaves per plant were infiltrated with a suspension of Pseudomonas syringae pv. tomato (2.105 cfu.ml-1) or with MgSO4 10 mM alone for control plants. Infiltrated leaves were collected 24h later. Keywords: normal vs rnai mutant comparaison,treated vs untreated comparison
Project description:Plant growth promoting rhizobacteria (PGPR) induce positive effects in plants, such as increased growth or reduced stress susceptibility. The mechanisms behind PGPR/plant interaction are poorly understood, as most studies have described short- term responses on plants and only a few studies have analyzed plant molecular responses under PGPR colonization. Transcriptional profiles were determined by microarray analysis (Affymetrix ATH1 Genome Array) in Arabidopsis thaliana plants inoculated with the PGPR bacterial model Burkholderia phytofirmans PsJN
Project description:Two diazotrophic bacteria, BPMP-PU-28 and BPMP-EL-40, isolated from the rhizosphere of a wild wheat ancestor (T. t. dicoccoides) grown in soil from its refuge area in the Fertile Crescent or from south of France, respectively, were shown to behave as efficient Plant Growth Promoting Rhizobacteria (PGPR) upon interaction with an elite wheat cultivar (Anvergur), providing about 50% of the seed nitrogen content in plants grown under low assimilable nitrogen availability. A bacterial growth medium was developed to investigate the effects of bacterial exudates on root development in the elite cultivar and to analyze the exo-metabolomes and exo-proteomes of the two strains. Altered root development was observed, with distinctive responses according to the strain, BPMP-PU-28 also inducing a strong increase in root hair length and density. Exo-metabolome analysis revealed a complex set of secondary metabolites including fatty acids potentially involved in volatile organic compounds (VOCs) metabolism, cyclopeptides that could act as phytohomone mimetics, quorum sensing molecules having inter-kingdom signaling properties and nutrient ion chelators. The exo-proteome comprised a set of strain specific enzymatic activities (e.g., proteases) and structural proteins belonging to outer-membrane vesicles likely to sequester metabolites, peptides and enzymes in their lumen. Thus, the wheat ability to establish efficient beneficial interactions with PGPR has not been profoundly reprogrammed during domestication and breeding, and PGPR constitutively exude rich and complex metabolomes and proteomes, in absence of partner roots, which could allow numerous mechanisms to simultaneously contribute to plant growth promotion and thereby broaden the range of responsive plant species.