Project description:Survey of relative gene expression profiles in larvae, pupae, and midguts and fatbodies of teneral, unfed, and fed adult mountain pine beetles from western Nevada, USA.
Project description:Survey of relative gene expression profiles in larvae, pupae, and midguts and fatbodies of teneral, unfed, and fed adult mountain pine beetles from western Nevada, USA. Array prepared on 4-tile chips (4-plex custom arrays), each feature represented by six different oligonucleotides, three replicate blocks/tile, hybridized with total RNA from 11 samples, each replicated four times. Vector (pDONR222) and two plant sequences included as negative controls.
Project description:Plants possess various defense strategies to counter attacks from microorganisms or herbivores. For example, plants reduce the cell-wall-macerating activity of pathogen- or insect-derived polygalacturonases (PGs) by expressing PG-inhibiting proteins (PGIPs). PGs and PGIPs belong to multi-gene families believed to have been shaped by an evolutionary arms race. The mustard leaf beetle Phaedon cochleariae expresses both active PGs and catalytically inactive PG pseudoenzymes. Previous studies demonstrated that (i) PGIPs target beetle PGs and (ii) the role of PG pseudoenzymes remains elusive, despite having been linked to the pectin degradation pathway. For further insight into the interaction between plant PGIPs and beetle PG family members, we combined affinity purification with proteomics and gene expression analyses, and identified novel inhibitors of beetle PGs from Chinese cabbage (Brassica rapa ssp. pekinensis). A beetle PG pseudoenzyme was not targeted by PGIPs, but instead interacted with PGIP-like proteins. Phylogenetic analysis revealed that PGIP-like proteins clustered apart from classical PGIPs but together with proteins, which have been involved in developmental processes. Our results indicate that PGIP-like proteins represent not only interesting novel PG inhibitor candidates in addition to classical PGIPs, but also fascinating new players in the arms race between herbivorous beetles and plant defenses.
Project description:Leaf senescence is the final developmental process that includes the mobilization of nutrients from old leaves to newly growing tissues. The progression of leaf senescence requires dynamic but coordinated changes of gene expression. Although several transcription factors (TFs) are known to be involved in both negative and positive modes of regulation of leaf senescence, detailed mechanisms that underlie the progression of leaf senescence are largely unknown. We report here that the class II ERF transcriptional repressors are controlled by proteasome and regulate the progression of leaf senescence in Arabidopsis. Since we had previously demonstrated that NtERF3, a model of tobacco class II ERFs, specifically interacts with a ubiquitin-conjugating enzyme, we examined the stability of NtERF3 and found that bacterially produced NtERF3 was rapidly degraded by plant protein extracts in vitro. Whereas NtERF3 accumulation was low in plants, it was increased by treatment with a proteasome inhibitor. Arabidopsis class II ERFs, namely, AtERF4 and AtERF8, were also controlled by proteasome and stabilized by aging of plants. The transgenic plants in which NtERF3, AtERF4, and AtERF8 were individually expressed under the control of the 35S promoter exhibited the precocious leaf senescence. Our microarray and RT-PCR analyses revealed that AtERF4 regulated expression of genes involving in various stress responses and leaf senescence. In contrast, aterf4 aterf8 mutant exhibited delayed leaf senescence. Taken together, we present the important role of class II ERFs in the regulation of leaf senescence.
Project description:The present project deals with bark beetle gut total proteome from callow and black bark beetle, Ips typographus. The study aims to identify life stage-specific expression of gut proteins in bark beetles and their functional relevance.
Project description:16S amplicon pool analyses of the four gut sections of the wood-feeding beetle, Odontotaenius disjunctus The beetle is purely wood feeding, and we aim to first characterize the community that exist within the gut sections 4 beetles, four gut sections per beetle, one PhyloChip per gut section, total = 16 chips
Project description:Leaf senescence is the final developmental process that includes the mobilization of nutrients from old leaves to newly growing tissues. The progression of leaf senescence requires dynamic but coordinated changes of gene expression. Although several transcription factors (TFs) are known to be involved in both negative and positive modes of regulation of leaf senescence, detailed mechanisms that underlie the progression of leaf senescence are largely unknown. We report here that the class II ERF transcriptional repressors are controlled by proteasome and regulate the progression of leaf senescence in Arabidopsis. Since we had previously demonstrated that NtERF3, a model of tobacco class II ERFs, specifically interacts with a ubiquitin-conjugating enzyme, we examined the stability of NtERF3 and found that bacterially produced NtERF3 was rapidly degraded by plant protein extracts in vitro. Whereas NtERF3 accumulation was low in plants, it was increased by treatment with a proteasome inhibitor. Arabidopsis class II ERFs, namely, AtERF4 and AtERF8, were also controlled by proteasome and stabilized by aging of plants. The transgenic plants in which NtERF3, AtERF4, and AtERF8 were individually expressed under the control of the 35S promoter exhibited the precocious leaf senescence. Our microarray and RT-PCR analyses revealed that AtERF4 regulated expression of genes involving in various stress responses and leaf senescence. In contrast, aterf4 aterf8 mutant exhibited delayed leaf senescence. Taken together, we present the important role of class II ERFs in the regulation of leaf senescence. Transcriptomes of 35S:AtERF4-HA and 35S:NLS-GFP-HA (control) Arabidopsis two-weeks seedling were compared.