Project description:MiRNA plays an important role in post-transcriptional gene regulation in plants. Whether TOR is involved in post-transcriptional gene regulation remains unclear in potato and other plants. In this study, we conducted the high-throughput sequencing of genome-wide miRNAs in the potato seedlings for profiling their expression patterns and identifying TOR related miRNAs in potato.
Project description:Long noncoding RNAs (lncRNAs) represent a class of RNA molecules that are implicated in regulation of gene expression, both in mammals and plants. While much progress has been made in determining the biological functions of lncRNAs in mammals, the functional roles of lncRNAs in plants are still poorly understood. Specifically, the roles of lncRNAs in plant defense responses are yet to be fully explored. Here, we used strand-specific RNA sequencing to identify 1649 lncRNAs in potato (Solanum tuberosum) from stem tissues. The lncRNAs are expressed from all 12 potato chromosomes and generally smaller in size compared to protein-coding genes. Like in other plants, most potato lncRNAs (86%) are transcribed from intergenic regions and possess single exons. A time-course RNA-seq analysis between a tolerant and susceptible potato cultivar challenged with Pectobacterium carotovorum subsp. brasilience revealed that 227 of these lncRNAs could be associated with response to this pathogen. These results suggest that lncRNAs have potential functional roles in potato defense responses. This work provides the foundation for further functional studies in understanding potato defense mechanisms.
Project description:Long noncoding RNAs (lncRNAs) represent a class of RNA molecules that are implicated in regulation of gene expression, both in mammals and plants. While much progress has been made in determining the biological functions of lncRNAs in mammals, the functional roles of lncRNAs in plants are still poorly understood. Specifically, the roles of lncRNAs in plant defense responses are yet to be fully explored. Here, we used strand-specific RNA sequencing to identify 1649 lncRNAs in potato (Solanum tuberosum) from stem tissues. The lncRNAs are expressed from all 12 potato chromosomes and generally smaller in size compared to protein-coding genes. Like in other plants, most potato lncRNAs (86%) are transcribed from intergenic regions and possess single exons. A time-course RNA-seq analysis between a tolerant and susceptible potato cultivar challenged with Pectobacterium carotovorum subsp. brasilience revealed that 227 of these lncRNAs could be associated with response to this pathogen. These results suggest that lncRNAs have potential functional roles in potato defense responses. This work provides the foundation for further functional studies in understanding potato defense mechanisms.
Project description:modENCODE_submission_3082 This submission comes from a modENCODE project of Michael Snyder. For full list of modENCODE projects, see http://www.genome.gov/26524648 Project Goal: We are identifying the DNA binding sites for 300 transcription factors in C. elegans. Each transcription factor gene is tagged with the same GFP fusion protein, permitting validation of the gene's correct spatio-temporal expression pattern in transgenic animals. Chromatin immunoprecipitation on each strain is peformed using an anti-GFP antibody, and any bound DNA is deep-sequenced using Solexa GA2 technology. For data usage terms and conditions, please refer to http://www.genome.gov/27528022 and http://www.genome.gov/Pages/Research/ENCODE/ENCODEDataReleasePolicyFinal2008.pdf EXPERIMENT TYPE: CHIP-seq. BIOLOGICAL SOURCE: Strain: OP193(official name : OP193 genotype : unc-119(ed3); wgIs193(sea-2::TY1 EGFP FLAG C; unc-119) outcross : 3 mutagen : Bombard tags : GFP::3xFlag description : This strain's transgene was constructed by Mihail Sarov at the Max Planck Institute for Cell Biology in Tubiginen using Tony Hyman's recombineering pipeline. The resulting plasmid was used for biolistic transformation of an unc-119(ed3) strain. The SEA-2::EGFP fusion protein is expressed in the correct sea-2 spatio-temporal expression pattern. This strain was used for ChIP-seq experiments to map the in vivo binding sites for the SEA-2 transcription factor. made_by : ); Developmental Stage: L3; Genotype: unc-119(ed3); wgIs193(sea-2::TY1 EGFP FLAG C; unc-119); Sex: Hermaphrodite; EXPERIMENTAL FACTORS: Developmental Stage L3; Target gene sea-2; Strain OP193(official name : OP193 genotype : unc-119(ed3); wgIs193(sea-2::TY1 EGFP FLAG C; unc-119) outcross : 3 mutagen : Bombard tags : GFP::3xFlag description : This strain's transgene was constructed by Mihail Sarov at the Max Planck Institute for Cell Biology in Tubiginen using Tony Hyman's recombineering pipeline. The resulting plasmid was used for biolistic transformation of an unc-119(ed3) strain. The SEA-2::EGFP fusion protein is expressed in the correct sea-2 spatio-temporal expression pattern. This strain was used for ChIP-seq experiments to map the in vivo binding sites for the SEA-2 transcription factor. made_by : ); temp (temperature) 20 degree celsius
Project description:In the present study molecular interactions between potato plants, Colorado potato beetle (CPB) larvae and Potato virus YNTN (PVYNTN) were investigated by analyzing gene expression in potato leaves. Grant ID: J4-4165 Slovenian Research Agency ARRS Growth and defense trade-offs in multitrophic interaction between potato and its two major pests Grant ID: P4-0165 Slovenian Research Agency ARRS Biotechnology and Plant Systems Biology