Project description:Hepatic complications of HCV infection, including fibrosis and cirrhosis are accelerated in HIV-infected individuals. Although liver biopsy remains the gold standard for staging HCV-associated liver disease, this test can result in serious complications and is subject to sampling error. These challenges have prompted a search for non-invasive methods for liver fibrosis staging. To this end, we compared serum proteome profiles at different stages of fibrosis in HIV/HCV co- and HCV mono-infected patients using SELDI-TOF MS.
Project description:A miRNA microarray was performed from HCV infected patient serum samples of bothe genotype 1b and genotype 3a, which are prevalent in India, with the aim of identifying a set of miRNAs which are uniquely differentially expressed during HCV infection. miR-320c, miR-483-5p, miR-134 and miR-198 were found to be upregulated in the patient samples as compared to the controls and are currenty being validated.
Project description:Hepatitis C Virus (HCV) core protein plays a major role in HCV mediated liver pathologies. We have previously reported that HCV core variants isolated from tumoral (T) and non-tumoral (NT) livers were capable to alleviate Smad transcriptional activity and to shift TGF-β responses from tumor suppressor effects to tumor promotion. To comprehensively appreciate the consequences of core-mediated deregulation of Smad signaling on TGF-b target gene expression, Affimetrix microarrays were performed. Microarray analyses demonstrate that HCV core expression in hepatocytes modulates TGF-b target gene expression. Furthermore, most of the genes modulated in core expressing hepatocytes after TGF-b treatment were already regulated in these non treated cells suggesting that HCV core is capable to activate latent TGF-b.
Project description:We performed miRNA array analysis for S-HCV (short-term HCV), L-HCV (long-term HCV) and control (uninfected Huh751), total for 3 samples to identify miRNA candidates in HCV-related HCC.
Project description:In this study, Solexa deep sequencing technology was used for high-throughput analysis of miRNAs in a small RNA library isolated from serum sample of HCV-related fibrosis and control healthy. In total, 41 miRNAs were dysregulated (30 upregulated and 11 downregulated) in the patients with chronic HCV infection compared with the healthy controls. Furthermore, miRNA features including length distribution and end variations were characterized. Annotation of targets revealed a broad range of biological processes and signal transduction pathways regulated by HCV-induced fibrosis miRNAs. In addition, miRNAs of HCV-related fibrosis and control healthy were confirmed using miRNA microarray analysis. Real-time quantitative PCR (qPCR) analysis of miRNA in the chronic HCV infection patients and control healthy groups showed good concordance between the sequencing and qPCR data. This study provides the first large-scale identification and characterization of HCV-related fibrosis miRNAs and their potential targets, and represents a foundation for further characterization of their roles in the regulation of the diversity of HCV-related fibrosis.
Project description:Hepatitis C virus (HCV) remains a significant public health threat as new 1.75 million HCV infections emerged worldwide. The majority of these infections become persistently infected, while around 30 % spontaneously eliminate the virus. Clinical factors for viral clarification are related to HCV interaction with host immune system, but little is known about the consequences after HCV spontaneous resolution. These individuals are difficult to recruit and study as acute infection is usually asymptomatic, and they will not be identified unless it progress to chronic infection. The study of peripheral blood mononuclear cells (PBMCs) of these patients is crucial, as PBMCs are one of the main HCV extrahepatic reservoirs, and its transcriptional profile provide us information of innate and adaptive immune response against HCV infection. Our research shows novel insight on molecular consequences of spontaneous resolution after an acute HCV infection. 96 Individuals with different HCV exposure status were recruited: spontaneous resolved, chronic infected and healthy controls; and the microRNA profile of their PBMCs were analyzed. Our results indicate similar disruption of miRNA expression on HCV chronic patients and those who spontaneously clarified the infection, compared to control patients. The disrupted miRNAs formed a signature of 21 miRNAs that mainly regulate lipid metabolism. This is the first report showing miRNA profile similarities between chronic HCV patients and spontaneous resolved individuals. Thus, our results suggest that HCV infection promotes molecular alterations in PBMCs that will last longer after HCV spontaneous eradication. This evidences open up new prospects in the management of individuals who spontaneously clarified infection, as they should be monitored and followed to dismiss future HCV-related complications, such us liver diseases complications. The identified miRNA signature could be used as biomarker to monitor HCV fingerprint on HCV-exposed patients.
Project description:HCV infection requires both virus and host factors, including endogenous genes, a large proportion of which are noncoding RNAs (ncRNAs). The identification and mechanistic elucidation of these stably and conservatively expressed RNAs will shed light on HCV gene diagnosis and therapy. Nevertheless, most studied ncRNAs in HCV are microRNAs, with numerous other types of ncRNAs being neglected, such as long noncoding RNAs (lncRNAs) or small nucleolar RNAs (snoRNAs). Here, using two different hepatoma cell lines, we performed small RNA sequencing and analyzed the differential expression of microRNAs and snoRNAs, which provide data for further functional validation of snoRNAs and microRNAs during HCV infection.
Project description:This study characterizes the effects of chronic Hepatitis C virus (HCV) infection on gene expression by analyzing blood samples from 10 treatment-naive HCV patients and 6 healthy volunteers. Differential expression analysis of microarray data from peripheral blood mononuclear cells (PBMCs) identified a 136 gene signature, including 66 genes elevated in infected individuals. Most of the up-regulated genes were associated with interferon (IFN) activity (including members of the OAS and MX families, ISG15 and IRF7), suggesting an ongoing immune response. This HCV signature was also found to be consistently enriched in many other viral infection and vaccination datasets. Validation of these genes was carried out using a second cohort composed of 5 HCV patients and 5 healthy volunteers, confirming the up-regulation of the IFN signature. In summary, this is the first study to directly compare blood transcriptional profiles from HCV patients with healthy controls. The results show that chronic HCV infection has a pronounced effect on gene expression in PBMCs of infected individuals, and significantly elevates the expression of a subset of interferon-stimulated genes.
Project description:This study characterizes the effects of chronic Hepatitis C virus (HCV) infection on gene expression by analyzing blood samples from 10 treatment-naive HCV patients and 6 healthy volunteers. Differential expression analysis of microarray data from peripheral blood mononuclear cells (PBMCs) identified a 136 gene signature, including 66 genes elevated in infected individuals. Most of the up-regulated genes were associated with interferon (IFN) activity (including members of the OAS and MX families, ISG15 and IRF7), suggesting an ongoing immune response. This HCV signature was also found to be consistently enriched in many other viral infection and vaccination datasets. Validation of these genes was carried out using a second cohort composed of 5 HCV patients and 5 healthy volunteers, confirming the up-regulation of the IFN signature. In summary, this is the first study to directly compare blood transcriptional profiles from HCV patients with healthy controls. The results show that chronic HCV infection has a pronounced effect on gene expression in PBMCs of infected individuals, and significantly elevates the expression of a subset of interferon-stimulated genes.