Project description:Proteomic characterization of skeletal muscle biopsies collected from the vastus lateralis of 44 male and female human subjects. Research subjects were divided in three different groups based on their individual exercise backgrounds and physical performance testing: 1) endurance trained (males; ME, n = 9 and females; FE, n = 9, with at least 15 years’ of regular training experience), 2) strength-trained males (MS, n = 9, with at least 15 years’ of regular training experience), and 3) age-matched healthy untrained controls (males, MC, n = 9 and females FC, n = 8, with a self-reported history of <2 exercise bouts per week over the past 15 years).
Project description:Human subjects were randomized for treatment with a GnRH-analogue, Goserelin, which suppresses endogenous testosterone or placebo for 12 weeks. Strength training was performed during the last 8 weeks. The suppression of testosterone resulted in an attenuation of the normal muscle adaptation to strength training (increased muscle mass and strength). To identify molecular signals involved in the response to testosterone levels, biopsies were obtained 4 hours after the last training session and gene expression compared with Affymetrix 3' microarrays. This timepoint should capture goserelin effect on both constitutive expression, training induced changes as well as acute exercise induced (4 hours) differences in mRNA levels. Four subject from the placebo group and five subjects from the Goserelin group were compared. Total RNA from vastus lateralis mmuscle biopsies were purified and analyzed on Affymetrix HG-U133 Plus 2.0 arrays.
Project description:Human subjects were randomized for treatment with a GnRH-analogue, Goserelin, which suppresses endogenous testosterone or placebo for 12 weeks. Strength training was performed during the last 8 weeks. The suppression of testosterone resulted in an attenuation of the normal muscle adaptation to strength training (increased muscle mass and strength). To identify molecular signals involved in the response to testosterone levels, biopsies were obtained 4 hours after the last training session and gene expression compared with Affymetrix 3' microarrays. This timepoint should capture goserelin effect on both constitutive expression, training induced changes as well as acute exercise induced (4 hours) differences in mRNA levels.
Project description:The strength of T cell stimulation determines IL-7 responsiveness, recall potential and lineage commitment of primed human CD4+IL-7Rhi T cells We analyzed how the strength of antigenic stimulation - as determined by dendritic cell (DC) number, DC maturation state and antigen concentration - controls in human CD4+ T cells IL-7R? expression and responsiveness to IL-7, IL-15 and antigen. We found that T cells primed by different strengths of stimulation expressed IL-7R? in different proportions and preferentially on cells that maintained expression of the central memory marker CCR7. However, while CCR7+IL-7Rhi cells generated at high strength of stimulation proliferated vigorously in response to IL-7 or IL-15, CCR7+IL-7Rhi cells generated at low strength of stimulation responded poorly. High cytokine responsiveness was associated with reduced PTEN expression and enhanced s6-kinase activation, consistent with efficient receptor coupling to downstream signalling pathways. Interestingly, while intermediate-stimulated CCR7+IL-7Rhi cells were non-polarized, self-renewed with IL-7 and expanded with antigen, high-stimulated cells generated Th1 effector cells with cytokines but showed impaired IL-2 production and survival with antigen. Gene expression analysis suggested that high-stimulated cells represented pre-Th1 cells with low recall potential and high metabolic state. Taken together these results demonstrate that IL-7 receptor expression and coupling are instructed in T cells by the strength of stimulation and suggest that memory subsets may derive from CCR7+IL-7Rhi precursors that received different strengths of stimulation. Keywords: comparison
Project description:In this study, the primary objective was to characterise the impact of regular post-exercise (20 strength training sessions across 10 weeks) cold-water immersion (CWI) on DNA methhylation. Secondary to this, the effect of regular post-exercise CWI on strength gains and post-exercise soreness was investigated. We used microarrays to detail the global effects of CWI on DNA methylation in vastus lateralis muscle tissue.
Project description:In this study, the primary objective was to characterise the impact of regular post-exercise (20 strength training sessions across 10 weeks) cold-water immersion (CWI) on mRNA expression. Secondary to this, the effect of regular post-exercise CWI on strength gains and post-exercise soreness was investigated. We used microarrays to detail the global effects of CWI on gene expression in vastus lateralis muscle tissue.