Project description:Newborn screening blood spots were obtained for neonates born to women enrolled in the Emory University African American Microbiome in Pregnacy Cohort
Project description:The Alpine goat Capra aegagrus hircus is parasitized by the barber pole worm (Haemonchus contortus). This relationship results in changes that affect the gene expression of the host, the pest, and the microbiome of both. Hematological parameters indicating genes that are expressed and/or the % Composition of abundant and diverse microbial flora are reflective of infestation. We identified responses to barber pole worms using blood-based analysis of transcripts and the microbiome. Seven (7) days post-inoculation (dpi) we identified 7,627 genes associated with different treatment types.
Project description:Aging is associated with declining immunity and inflammation as well as alterations in the gut microbiome with a decrease of beneficial microbes and increase in pathogenic ones. The aim of this study was to investigate aging associated gut microbiome in relation to immunologic and metabolic profile in a non-human primate (NHP) model. 12 old (age>18 years) and 4 young (age 3-6 years) Rhesus macaques were included in this study. Immune cell subsets were characterized in PBMC by flow cytometry and plasma cytokines levels were determined by bead based multiplex cytokine analysis. Stool samples were collected by ileal loop and investigated for microbiome analysis by shotgun metagenomics. Serum, gut microbial lysate and microbe-free fecal extract were subjected to metabolomic analysis by mass-spectrometry. Our results showed that the old animals exhibited higher inflammatory biomarkers in plasma and lower CD4 T cells with altered distribution of naïve and memory T cell maturation subsets. The gut microbiome in old animals had higher abundance of Archaeal and Proteobacterial species and lower Firmicutes than the young. Significant enrichment of metabolites that contribute to inflammatory and cytotoxic pathways was observed in serum and feces of old animals compared to the young. We conclude that aging NHP undergo immunosenescence and age associated alterations in the gut microbiome that has a distinct metabolic profile.
Project description:Clinical treatment protocols for infertility with in vitro fertilization-embryo transfer (IVF-ET) provide a unique opportunity to assess the human vaginal microbiome in defined hormonal milieu. Herein, we have investigated the association of circulating ovarian-derived estradiol (E2) and progesterone (P4) concentrations to the vaginal microbiome. Thirty IVF-ET patients were enrolled in this study, after informed consent. Blood was drawn at four time points during the IVF-ET procedure. In addition, if a pregnancy resulted, blood was drawn at 4-to-6 weeks of gestation. The serum concentrations of E2 and P4 were measured. Vaginal swabs were obtained in different hormonal milieu. Two independent genome-based technologies (and the second assayed in two different ways) were employed to identify the vaginal microbes. The vaginal microbiome underwent a transition with a decrease in E2 (and/or a decrease in P4). Novel bacteria were found in the vagina of 33% of the women undergoing IVF-ET. Our approach has enabled the discovery of novel, previously unidentified bacterial species in the human vagina in different hormonal milieu. While the relationship of hormone concentration and vaginal microbes was found to be complex, the data support a shift in the microbiome of the human vagina during IVF-ET therapy using standard protocols. The data also set the foundation for further studies examining correlations between IVF-ET outcome and the vaginal microbiome within a larger study population.
Project description:Opioid analgesics are frequently prescribed in the United States and worldwide. However, serious side effects such as addiction, immunosuppression and gastrointestinal symptoms limit long term use. In the current study using a chronic morphine-murine model a longitudinal approach was undertaken to investigate the role of morphine modulation of gut microbiome as a mechanism contributing to the negative consequences associated with opioids use. The results revealed a significant shift in the gut microbiome and metabolome within 24 hours following morphine treatment when compared to placebo. Morphine induced gut microbial dysbiosis exhibited distinct characteristic signatures profiles including significant increase in communities associated with pathogenic function, decrease in communities associated with stress tolerance. Collectively, these results reveal opioids-induced distinct alteration of gut microbiome, may contribute to opioids-induced pathogenesis. Therapeutics directed at these targets may prolong the efficacy long term opioid use with fewer side effects.
Project description:Pancreatic cancer is the 3rd most prevalent cause of cancer related deaths in United states alone, with over 55000 patients being diagnosed in 2019 alone and nearly as many succumbing to it. Late detection, lack of effective therapy and poor understanding of pancreatic cancer systemically contributes to its poor survival statistics. Obesity and high caloric intake linked co-morbidities like type 2 diabetes (T2D) have been attributed as being risk factors for a number of cancers including pancreatic cancer. Studies on gut microbiome has shown that lifestyle factors as well as diet has a huge effect on the microbial flora of the gut. Further, modulation of gut microbiome has been seen to contribute to effects of intensive insulin therapy in mice on high fat diet. In another study, abnormal gut microbiota was reported to contribute to development of diabetes in Db/Db mice. Recent studies indicate that microbiome and microbial dysbiosis plays a role in not only the onset of disease but also in its outcome. In colorectal cancer, Fusobacterium has been reported to promote therapy resistance. Certain intra-tumoral bacteria have also been shown to elicit chemo-resistance by metabolizing anti-cancerous agents. In pancreatic cancer, studies on altered gut microbiome have been relatively recent. Microbial dysbiosis has been observed to be associated with pancreatic tumor progression. Modulation of microbiome has been shown to affect response to anti-PD1 therapy in this disease as well. However, most of the studies in pancreatic cancer and microbiome have remained focused om immune modulation. In the current study, we observed that in a T2D mouse model, the microbiome changed significantly as the hyperglycemia developed in these animals. Our results further showed that, tumors implanted in the T2D mice responded poorly to Gemcitabine/Paclitaxel (Gem/Pac) standard of care compared to those in the control group. A metabolomic reconstruction of the WGS of the gut microbiota further revealed that an enrichment of bacterial population involved in drug metabolism in the T2D group.