Project description:Asthma is an inflammatory disease of the airways characterised by episodic airway obstruction resulting in cough, episodic shortness of breath. It is, and is clinically and physiologically heterogeneous. It is estimated that around 300 million people worldwide have the diseaseare diagnosed with asthma, including up to 20% of children (Asher et al, 2006), with 5–10% of these children believed to have severe or difficult-to-treat asthma. Asthma has often been classified in terms of severity and based on clinical diagnostic criteria, but it is now apparent that the heterogeneity that exists at the physiological level is also a feature of the underlying pathological mechanisms (Lotvall et al, 2011). The aim of this study was to identify blood transcriptomics profiles for children diagnosed with asthma or wheeze, and establish whether these profiles suggested endotypes or mechanisms that could underlie disease, or be related to disease severity, in these children. Importantly, given that children are currently treated with the same medicines as adults, we also aimed to compare profiles of children to those of adults with asthma to help determine whether efforts should be directed to the development of medicines targeting pathways and mechanisms that may be unique to children. To this end, we used gene transcriptome data generated from blood samples from adults and children from the U-BIOPRED consortium to ask how similar or different the differential gene expression profiles were between groups of adults and pre-school or school-aged children with severe or mild-moderate asthma (or wheeze for the pre-school aged children) using current definitions. The Unbiased Biomarkers for the Prediction of Respiratory Disease Outcomes (U-BIOPRED) project was set up as a public-private partnership within the framework of the Innovative Medicines Initiative (IMI), engaging academia, the pharmaceutical industry and patient groups. The goal of this investigation was to identify transcript fingerprints in whole blood that characterize patients with severe asthma and to determine whether subgroups of severe asthmatics can be identified.
Project description:Background: In asthma, airway epithelium remodeling can already be detected during childhood, and epithelial cells are more susceptible to virus and oxidative stress. Their exact role in natural history and severity of children allergic respiratory disease remains however surprisingly unexplored. Aim: To analyze dysfunctions of epithelium in dust mite allergic respiratory disease (rhinitis ± asthma) in children. Methods: Expression profilings of nasal epithelial cells collected by brushing were performed on Affymetrix Hugene 1.0 ST arrays. All allergic patients were sensitized to dust mite. 19 patients had an isolated allergic rhinitis (AR). 14 patients had AR associated with asthma. Patients were compared to 12 controls, their severity and control being assessed according to NAEPP and ARIA criteria. Infections by respiratory viruses were excluded by real-time PCR measurements. Results: 61 probes were able to distinguish allergic rhinitis children from healthy controls. A majority of these probes was under the control of Th2 cytokines, as evidenced by parallel experiments performed on primary cultures of nasal epithelial cells. In uncontrolled asthmatic patients, we observed not only an enhanced expression of these Th2-responsive transcripts, but also a down-regulation of interferon-responsive genes. Conclusion: Our study identifies a Th2 driven epithelial phenotype common to all dust mite allergic children. Besides, it suggests that epithelium is involved in the severity of the disease. Expression profiles observed in uncontrolled asthmatic patients suggest that severity of asthma is linked at the same time to atopy and to impaired viral response. Nasal epithelium gene expression profiling of dust mite allergic children with isolated rhinitis, rhinitis associated with asthma and controls. 38 samples classified in 4 categories : 14 isolated rhinitis (R), 6 rhinitis with uncontrolled asthma (UA), 7 rhinitis with controlled asthma (CA) and 11 healthy subjects (C )
Project description:Background: In asthma, airway epithelium remodeling can already be detected during childhood, and epithelial cells are more susceptible to virus and oxidative stress. Their exact role in natural history and severity of children allergic respiratory disease remains however surprisingly unexplored. Aim: To analyze dysfunctions of epithelium in dust mite allergic respiratory disease (rhinitis ± asthma) in children. Methods: Expression profilings of nasal epithelial cells collected by brushing were performed on Affymetrix Hugene 1.0 ST arrays. All allergic patients were sensitized to dust mite. 19 patients had an isolated allergic rhinitis (AR). 14 patients had AR associated with asthma. Patients were compared to 12 controls, their severity and control being assessed according to NAEPP and ARIA criteria. Infections by respiratory viruses were excluded by real-time PCR measurements. Results: 61 probes were able to distinguish allergic rhinitis children from healthy controls. A majority of these probes was under the control of Th2 cytokines, as evidenced by parallel experiments performed on primary cultures of nasal epithelial cells. In uncontrolled asthmatic patients, we observed not only an enhanced expression of these Th2-responsive transcripts, but also a down-regulation of interferon-responsive genes. Conclusion: Our study identifies a Th2 driven epithelial phenotype common to all dust mite allergic children. Besides, it suggests that epithelium is involved in the severity of the disease. Expression profiles observed in uncontrolled asthmatic patients suggest that severity of asthma is linked at the same time to atopy and to impaired viral response. Differentiated HNECs gene expression profiling in context of Th2 and IFN cytokine stimulation Each condition was performed in triplicates: total of 21 samples
Project description:Background: In asthma, airway epithelium remodeling can already be detected during childhood, and epithelial cells are more susceptible to virus and oxidative stress. Their exact role in natural history and severity of children allergic respiratory disease remains however surprisingly unexplored. Aim: To analyze dysfunctions of epithelium in dust mite allergic respiratory disease (rhinitis ± asthma) in children. Methods: Expression profilings of nasal epithelial cells collected by brushing were performed on Affymetrix Hugene 1.0 ST arrays. All allergic patients were sensitized to dust mite. 19 patients had an isolated allergic rhinitis (AR). 14 patients had AR associated with asthma. Patients were compared to 12 controls, their severity and control being assessed according to NAEPP and ARIA criteria. Infections by respiratory viruses were excluded by real-time PCR measurements. Results: 61 probes were able to distinguish allergic rhinitis children from healthy controls. A majority of these probes was under the control of Th2 cytokines, as evidenced by parallel experiments performed on primary cultures of nasal epithelial cells. In uncontrolled asthmatic patients, we observed not only an enhanced expression of these Th2-responsive transcripts, but also a down-regulation of interferon-responsive genes. Conclusion: Our study identifies a Th2 driven epithelial phenotype common to all dust mite allergic children. Besides, it suggests that epithelium is involved in the severity of the disease. Expression profiles observed in uncontrolled asthmatic patients suggest that severity of asthma is linked at the same time to atopy and to impaired viral response. Nasal epithelium gene expression profiling of dust mite allergic children with isolated rhinitis, rhinitis associated with asthma and controls.
Project description:Background: In asthma, airway epithelium remodeling can already be detected during childhood, and epithelial cells are more susceptible to virus and oxidative stress. Their exact role in natural history and severity of children allergic respiratory disease remains however surprisingly unexplored. Aim: To analyze dysfunctions of epithelium in dust mite allergic respiratory disease (rhinitis ± asthma) in children. Methods: Expression profilings of nasal epithelial cells collected by brushing were performed on Affymetrix Hugene 1.0 ST arrays. All allergic patients were sensitized to dust mite. 19 patients had an isolated allergic rhinitis (AR). 14 patients had AR associated with asthma. Patients were compared to 12 controls, their severity and control being assessed according to NAEPP and ARIA criteria. Infections by respiratory viruses were excluded by real-time PCR measurements. Results: 61 probes were able to distinguish allergic rhinitis children from healthy controls. A majority of these probes was under the control of Th2 cytokines, as evidenced by parallel experiments performed on primary cultures of nasal epithelial cells. In uncontrolled asthmatic patients, we observed not only an enhanced expression of these Th2-responsive transcripts, but also a down-regulation of interferon-responsive genes. Conclusion: Our study identifies a Th2 driven epithelial phenotype common to all dust mite allergic children. Besides, it suggests that epithelium is involved in the severity of the disease. Expression profiles observed in uncontrolled asthmatic patients suggest that severity of asthma is linked at the same time to atopy and to impaired viral response. Differentiated HNECs gene expression profiling in context of Th2 and IFN cytokine stimulation
Project description:Asthma and postinfectious bronchiolitis obliterans (PIBO) are chronic lung diseases characterized by recurrent episodes of wheezing. Mycoplasma, adenovirus, and respiratory syncytial virus infections can trigger both asthma and PIBO. These two diseases have common etiologic mechanisms that cause airway epithelial injury. They are often difficult to differentiate clinically in preschool children because both are exacerbated by viral infections and respond similarly to steroids and β2 agonists. PIBO, which is occasionally observed in children, is diagnosed through characteristic findings of air trapping on computed tomography or in biopsy samples of lung tissue. However, researchers have not clearly identified the specific blood markers that can distinguish these diseases or the differences in the mechanisms of development. We performed proteomic analysis of plasma to identify specific biomarkers that can be helpful in differentiating asthma from PIBO. This study discovered plasma biomarker candidates by measuring plasma proteome sequential window acquisition of all theoretical mass spectra (SWATH-MS) and included 30 healthy children, 18 with asthma and 15 with PIBO. was used to measure proteins in plasma samples. We identified and quantified 354 proteins across all 63 samples in the SWATH-MS analysis.
Project description:Background: Epigenetic marks, like asthma, are heritable. They are influenced by the environment, direct the maturation of T cellslymphocytes, and have been shown to enhance the development of allergic airways disease in mice. Thus, we hypothesized that epigenetic marks are associated with allergic asthma in inner-city children. Methods: We compared methylation patterns and gene expression in inner-city children with persistent atopic asthma versus healthy controls, using DNA and RNA from peripheral blood mononuclear cells (PBMCs) from inner city children aged 6-12 years with persistent atopic asthma children and healthy controls. Results were externally validated with the GABRIELA study population. Results: Comparing asthmatics (N=97) to controls (N=97), we identified 81 regions that were differentially methylated. Several immune genes were hypomethylated in asthmatics, including IL-13, RUNX3, and a number of specific genes relevant to natural killer cells (KIR2DL4, KIR2DL3, KIR3DL1, and KLRD1) and T cells lymphocytes (TIGIT). 14 differentially methylated regions (DMRs) were associated with the serum IgE concentration of IgE, including RUNX3. These results were internally and externally validated with a global methylation assessment using a different methodology in our inner-city cohort and an independent European cohort (GABRIELA). Hypo- and hypermethylated genes tended to be associated with increased and decreased gene expression, respectively (P<0.6x10-11 for asthma and ; P<0.01 for IgE). To further explore the relationship between methylation and gene expression, we created a matrix of genomic changes in methylation versus transcriptional changes (methyl eQTL) for asthma, and identified cis- and trans-regulated genes whose expression was related to asthma asthma-associated methylation marks. peripheral blood mononuclear cells (PBMCs) from 97 atopic asthmatic and 97 nonatopic nonasthmatic children
Project description:Background: Epigenetic marks, like asthma, are heritable. They are influenced by the environment, direct the maturation of T cellslymphocytes, and have been shown to enhance the development of allergic airways disease in mice. Thus, we hypothesized that epigenetic marks are associated with allergic asthma in inner-city children. Methods: We compared methylation patterns and gene expression in inner-city children with persistent atopic asthma versus healthy controls, using DNA and RNA from peripheral blood mononuclear cells (PBMCs) from inner city children aged 6-12 years with persistent atopic asthma children and healthy controls. Results were externally validated with the GABRIELA study population. Results: Comparing asthmatics (N=97) to controls (N=97), we identified 81 regions that were differentially methylated. Several immune genes were hypomethylated in asthmatics, including IL-13, RUNX3, and a number of specific genes relevant to natural killer cells (KIR2DL4, KIR2DL3, KIR3DL1, and KLRD1) and T cells lymphocytes (TIGIT). 14 differentially methylated regions (DMRs) were associated with the serum IgE concentration of IgE, including RUNX3. These results were internally and externally validated with a global methylation assessment using a different methodology in our inner-city cohort and an independent European cohort (GABRIELA). Hypo- and hypermethylated genes tended to be associated with increased and decreased gene expression, respectively (P<0.6x10-11 for asthma and ; P<0.01 for IgE). To further explore the relationship between methylation and gene expression, we created a matrix of genomic changes in methylation versus transcriptional changes (methyl eQTL) for asthma, and identified cis- and trans-regulated genes whose expression was related to asthma asthma-associated methylation marks. peripheral blood mononuclear cells (PBMCs) from 97 atopic asthmatic and 97 nonatopic nonasthmatic children
Project description:Background: Asthma is highly heterogeneous and severity evaluation is key to asthma management. DNA methylation (DNAm) contributes to asthma pathogenesis. This study aimed to identify nasal epithelial DNAm differences between severe and non-severe asthmatic children and evaluate the impact of environmental exposures. Methods: Thirty-three non-severe and 22 severe asthmatic African-American children were included in an epigenome-wide association study. Genome-wide nasal epithelial DNAm and gene expression were measured. CpG sites associated with asthma severity and environmental exposures and predictive of severe asthma were identified. DNAm was correlated with gene expression. Enrichment for transcription factor (TF) binding sites or histone modifications surrounding DNAm differences were determined. Results: We identified 816 differentially methylated CpG positions (DMPs) and 10 differentially methylated regions (DMRs) associated with asthma severity. Three DMPs exhibited discriminatory ability for severe asthma. Intriguingly, six DMPs were simultaneously associated with asthma, allergic asthma, total IgE, environmental IgE, and FeNO in an independent cohort of children. 27 DMPs were associated with traffic-related air pollution or secondhand smoke. DNAm at 22 DMPs were altered by diesel particles or allergen in human bronchial epithelial cells. DNAm levels at 39 DMPs were correlated with mRNA expression. Proximal to 816 DMPs, three histone marks and several TFs involved in asthma pathogenesis were enriched. Conclusions: Significant differences in nasal epithelial DNAm were observed between non-severe and severe asthma in African-American children, a subset of which may be useful to predict disease severity. These CpG sites are subject to the influences of environmental exposures and may regulate gene expression.
Project description:Mutations in the DREAM complex induce germline-like gene expression patterns including the increase of multiple mechanisms of DNA repair in the soma of Caenorhabditis elegans. This confers mutants of the DREAM complex resistance to a wide range of DNA damage types during development and aging.