Project description:The experiment consisted of a field design containing two maize inbred lines Va35 and Mp313E. Va35 has yellow kernels and is susceptible to kernel infection by Aspergillus flavus (A. flavus). Mp313E is a white dent maize inbred line and was released primarily as a source of resistance to kernel infection by A. flavus. The test ears were inoculated with Aspergillus flavus and collected two days after inoculation. Non-inoculated ears collected 16 days after pollination were also used as a control. The microarray experimental design was a randomized complete block design with three replications. One microarray slide was used for each field plot. Each slide contained the inoculated and non-inoculated sub-treatments. A second slide for one replication of each genotype contained a dye swap for the inoculation treatment and three subsamples (dots) within the slide represented each contig. Keywords: Direct comparison
Project description:In social insects, workers perform distinct tasks according to the caste they belong to, and workers from different castes differ in their age (nest workers are usually younger than foragers are). The caste shift thus seems inseparable from age, preventing from deciphering the role of labour division and age in regulating individual physiology and ageing rates. We set up an experimental protocol separating age and caste effects by defining four groups of black garden ant (Lasius niger) workers: young foragers (Y.F), old foragers (O.F), young nest workers (Y.NW) and old nest workers (O.NW). Proteomics highlighted differences between individuals according to their age, whereas metabolomics revealed caste-related differences. Our study highlighted that age and caste influence specifically different aspects of the physiology of ant workers.
Project description:To reveal the molecular basis of the long-term sperm storage mechanisms in ant queens, protein profiles enriched in the spermathecal fluid relative to the hemolymph were identified in Lasius japonicus using data-independent acquisition (DIA)-based quantitative proteomics technology.