Project description:To elucidate the molecular pathways that modulate renal cyst growth in autosomal dominant polycystic kidney disease (ADPKD) Keywords: Disease state analysis We performed global gene profiling on renal cysts of different size (small cysts: less than 1 ml, n=5; medium cysts: between 10-25 ml, n=5; large cysts: greater than 50 ml, n=3) and minimally cystic tissue (MCT, n=5) from five PKD1 polycystic kidneys. Additionally, non-cancerous renal cortical tissue from three nephrectomized kidneys with isolated renal cell carcinoma was used as normal control tissue (n=3). This dataset is part of the TransQST collection.
Project description:We have previously described global hypomethylation and site-specific DNA methylation changes which are associated with disease-state renal tissue in Autosomal Dominant Polycystic Kidney Disease (ADPKD). However, to-date there are no available data on the pattern of DNA methylation across an ADPKD kidney. Here we describe the methylome of eight individual cysts from a single ADPKD patient and peform an intra-individual analysis to identify regions of DNA methylation variability.
Project description:Microvescicles (MV) and exosomes (EX) seem to be involved in the pathogenetic machinery of the autosomal dominant polycystic kidney disease (ADPKD), but, at the moment, no studies have assessed their role in medullary sponge kidney disease (MSK), a sporadic kidney malformation featuring cysts, nephrocalcinosis and recurrent renal stones. To discover their role in this disease we employed a proteomic-based research strategy.
Project description:Changes in gene expression levels were identified by microarray. Samples were human kidney epithelial cell lines derived from patients with Autosomal Dominant Polycystic Kidney Disease (ADPKD) and unaffected controls. Autosomal Dominant Polycystic Kidney Disease (ADPKD), the most common inherited kidney disease, is due to mutations in PKD1 (85%) or PKD2 (15%) but has a highly variable phenotypic disease expression. We conducted parallel microarray profiling in normal and diseased human PKD1 cystic kidney cells to identify altered signatures of microRNA and mRNA target genes potentially implicated in disease expression.
Project description:ADPKD (Autosomal dominant polycystic kidney disease) is the most common inherited disorders and is characterized by growth of numerous cysts filled with fluid in the kidneys. Ultimately, it leads to kidney failure. The mutations of PKD1 and PKD2 account for approximately 85 and 15 percent of ADPKD, respectively. However, the mechanisms related to genetic mutation of PKD1 and PKD2 are still unclear. To investigate altered gene expression levels, Affymetrix microarray was performed using the kidney tissue from normal and ADPKD patients.
Project description:Polycystic Kidney Disease (PKD) is a genetic disease of the kidney characterized by the gradual replacement of normal kidney parenchyma by fluid-filled cysts and fibrotic tissue. Autosomal Dominant Polycystic Kidney Disease (ADPKD) is caused by mutations in the PKD1 or PKD2 gene. Here we present an RNASeq experiment designed to investigate the effect of a kidney specific and Tamoxifen inducible knockout of the Pkd1 gene in mice. 7 mice were grouped into two groups, 4 Tamoxifen treated mice which develop an adult onset Polycystic Kidney Disease phenotype and 3 untreated mice which have WT phenotype.
Project description:Changes in microRNA expression levels were identified by microarray. Samples were human kidney epithelial cell lines derived from patients with Autosomal Dominant Polycystic Kidney Disease (ADPKD) and unaffected controls. Autosomal Dominant Polycystic Kidney Disease (ADPKD), the most common inherited kidney disease, is due to mutations in PKD1 (85%) or PKD2 (15%) but has a highly variable phenotypic disease expression. We conducted parallel microarray profiling in normal and diseased human PKD1 cystic kidney cells to identify altered signatures of microRNA and mRNA target genes potentially implicated in disease expression. This dataset contains the results of the microRNA analysis.
Project description:Polycystic Kidney Disease (PKD) is a genetic disease of the kidney characterized by the gradual replacement of normal kidney parenchyma by fluid-filled cysts and fibrotic tissue. Autosomal Dominant Polycystic Kidney Disease (ADPKD) is caused by mutations in the PKD1 or PKD2 gene. Here we present an RNASeq experiment designed to investigate the effect of a kidney specific and Tamoxifen inducible knockout of the Pkd1 gene in mice. The Pkd1cko mice were harvested at different time points 2-weeks, 3-weeks, 5-weeks, 10.5-weeks, 11-weeks and 15-weeks after gene inactivation.