Project description:Background: Traumatic brain injury is a medical event of global concern, and a growing body of research suggests that circular RNA can play very important roles in traumatic brain injury. To explore the functions of more novel and valuable circular RNA in traumatic brain injury response, a moderate traumatic brain injury in rat was established and a comprehensive analysis of circular RNA expression profiles in rat cerebral cortex was done. Results: As a result, 301 up-regulated and 284 down-regulated circular RNAs were obtained in moderate traumatic brain injury rats, the Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analysis were performed based on the circular RNA’s host genes, and a circRNA-miRNA interaction network based on differentially expressed circular RNAs was constructed. Also, four circular RNAs were validated by RT-qPCR and sanger sequencing. Conclusion: This study showed that differentially expressed circular RNAs existed between rat cerebral cortex after moderate traumatic brain injury and control. And this will provide valuable information for circular RNA research in the field of traumatic brain injury.
Project description:Objectives: The aim of this study was to reveal the transcriptomic profile of the cerebral cortex in traumatic brain injury (TBI) mice. Methods: A controlled cortical impact (CCI) device was used to establish a TBI model. The gene expression in the cerebral cortex was detected by whole-transcriptome sequencing (RNA-Seq).
Project description:Traumatic brain injury (TBI) induces a complex cascade of molecular and physiological effects. This study proposes to investigate the gene expression profile in cortex and hippocampus over early time points, following two different injury severities. These results will complement prior knowledge of both metabolic and neuroplastic changes after TBI, as well as serve as a starting point to investigate additional gene families whose expression is altered after TBI.,To characterize the profile of gene expression following a diffuse traumatic brain injury of varying severity in adult rats. ,Distinct patterns of gene expression following traumatic brain injury will occur in a time- and injury-dependent fashion. In particular, changes in expression of enzymes involved in energy metabolism and neuroplasticity will be detected.,Adult rats will be subjected to mild and severe lateral fluid percussion injury OR sham surgery without injury. At various post-injury timepoints (0.5, 4 and 24 hours), animals will be sacrificed, brain regions (parietal cortex and hippocampus, ipsilateral and contralateral to injury) will be dissected and RNA isolated. RNA will be used to synthesize cRNA probes for microarray hybridization. RNA from 2 matched animals will be pooled onto a single chip (U34A rat, Affymetrix). Comparisons will be made between sham and injured animals, with brain region, injury severity, and post-injury time point as the experimental variables.
Project description:At 3-months after after traumatic brain injury, small RNA sequencing was performed on samples from ipsilateral thalamus and perilesional cortex of selected rats with the chronic inflammatory endophenotype, and sham-operated controls.
2022-01-26 | GSE192980 | GEO
Project description:RNA-seq for erythropoietin treated mice after traumatic brain injury
| PRJNA862128 | ENA
Project description:RNA-seq for Melatonin treated mice after traumatic brain injury
Project description:Many extracellular matrix (ECM) changes occur in the brain after traumatic brain injury. This work sought to understand the dynamics of ECM modifications after TBI by comparing RNA transcription between ipsilateral and contralateral brain regions. Mice underwent controlled cortical impact (with a 2mm depth) using a pneumatic impactor. Seven days later, brain tissue was harvested from the site of injury and from the corresponding contralateral cortex. Microarrays were used to measure gene expression to compare these tissues.
Project description:Explore DNA methylation in traumatic brain injury model of epilepsy and its relationship to gene expression. Examination of methylation changes in stimulated rats compared to sham operated animals in traumatic brain injury model of epilepsy.
Project description:Traumatic brain injury (TBI) induces a complex cascade of molecular and physiological effects. This study proposes to investigate the gene expression profile in cortex and hippocampus over early time points, following two different injury severities. These results will complement prior knowledge of both metabolic and neuroplastic changes after TBI, as well as serve as a starting point to investigate additional gene families whose expression is altered after TBI. To characterize the profile of gene expression following a diffuse traumatic brain injury of varying severity in adult rats. Distinct patterns of gene expression following traumatic brain injury will occur in a time- and injury-dependent fashion. In particular, changes in expression of enzymes involved in energy metabolism and neuroplasticity will be detected. Adult rats will be subjected to mild and severe lateral fluid percussion injury OR sham surgery without injury. At various post-injury timepoints (0.5, 4 and 24 hours), animals will be sacrificed, brain regions (parietal cortex and hippocampus, ipsilateral and contralateral to injury) will be dissected and RNA isolated. RNA will be used to synthesize cRNA probes for microarray hybridization. RNA from 2 matched animals will be pooled onto a single chip (U34A rat, Affymetrix). Comparisons will be made between sham and injured animals, with brain region, injury severity, and post-injury time point as the experimental variables. Keywords: time-course