Project description:In mammals, DNA methylation is essential for protecting repetitive sequences from aberrant transcription, translocation, and homologous recombination. However, DNA hypomethylation occurs during specific developmental stages (e.g. preimplantation embryos) and in certain cell types (e.g., primordial germ cells). The absence of dysregulated repetitive elements in these cells suggests the existence of alternative mechanisms that prevent genome instability triggered by DNA hypomethylation. In this report, we seek to elucidate the factors that play a critical role in ensuring genome stability by focusing on DAXX and ATRX, two proteins that have been linked to transcriptional control and epigenetic regulation. We carried out ChIP-seq and RNA-seq analyses to compare the genome-wide binding and transcriptome profiles of DAXX and ATRX in mouse ES (mES) cells triple knocked out for the three mammalian DNA methyltransferases (DNMTs) (TKO cells) to those in wildtype mES cells. Our data indicate that DAXX and ATRX are distinct in their chromatin-binding profiles and highly co-enriched at tandem repetitive elements. Global DNA hypomethylation, as was the case in TKO cells, further promoted the recruitment of the DAXX/ATRX complex to tandem repeat sequences including IAP (intracisternal A‐particle) retrotransposons and telomeres. Inhibition of DAXX or ATRX in cells with hypomethylated genomes (e.g., TKO cells, mES cells cultured in ground-state conditions, and preimplantation embryos) increased aberrant transcriptional de-repression of repeat elements and dysfunction at telomeres. Furthermore, we provide evidence that DAXX/ATRX-dependent silencing may occur through DAXX’s interaction with SUV39H1 and increased H3K9me3 on repetitive sequences. Our study suggests that DAXX and ATRX are important for safeguarding the genome, particularly in silencing repetitive elements in the absence of DNA methylation. We tested the hypothesis that the DAXX/ATRX complex participates in protecting repetitive elements in the absence of DNA methylation. To this end, we investigated genome-wide chromatin targeting of DAXX and ATRX in wildtype mES cells, and in mES cells that exhibit extensive loss of DNA methylation due to homozygous knockout of all three DNA.
Project description:DNA methylation is an essential epigenetic modification, present in both unique DNA sequences and repetitive elements, but its exact function in repetitive elements remains obscure. Here, we describe the genome-wide comparative analysis of the 5mC, 5hmC, 5fC and 5caC profiles of repetitive elements in mouse embryonic fibroblasts and mouse embryonic stem cells. We provide evidence for distinct and highly specific DNA methylation/oxidation patterns of the repetitive elements in both cell types, which mainly affect CA repeats and evolutionary conserved mouse-specific transposable elements including IAP-LTRs, SINEs B1m/B2m and L1Md-LINEs. DNA methylation controls the expression of these retro-elements, which are clustered at specific locations in the mouse genome. We show that TDG is implicated in the regulation of their unique DNA methylation/oxidation signatures and their dynamics. Our data suggest the existence of novel epigenetic code for the most recently acquired evolutionary conserved repeats that could play a major role in cell differentiation.
Project description:DNA methylation is an essential epigenetic modification, present in both unique DNA sequences and repetitive elements, but its exact function in repetitive elements remains obscure. Here, we describe the genome-wide comparative analysis of the 5mC, 5hmC, 5fC and 5caC profiles of repetitive elements in mouse embryonic fibroblasts and mouse embryonic stem cells. We provide evidence for distinct and highly specific DNA methylation/oxidation patterns of the repetitive elements in both cell types, which mainly affect CA repeats and evolutionary conserved mouse-specific transposable elements including IAP-LTRs, SINEs B1m/B2m and L1Md-LINEs. DNA methylation controls the expression of these retro-elements, which are clustered at specific locations in the mouse genome. We show that TDG is implicated in the regulation of their unique DNA methylation/oxidation signatures and their dynamics. Our data suggest the existence of novel epigenetic code for the most recently acquired evolutionary conserved repeats that could play a major role in cell differentiation. This SuperSeries is composed of the SubSeries listed below.