Project description:Centromeres play an essential role in cell division by specifying the site of kinetochore formation on each chromosome so that chromosomes can attach to the mitotic spindle for segregation. Centromeres are defined epigenetically by the histone H3 variant CEntromere Protein A (CENP-A). Dividing cells maintain the centromere by depositing new CENP-A each cell cycle to replenish CENP-A diluted by replication. The CENP-A nucleosome serves as the primary signal to the machinery responsible for its replenishment. Vertebrate centromeres are frequently built on repetitive sequences organized in tandem arrays. Repetitive centromeric DNA has been suggested to play a role in centromere maintenance and in de novo centromere formation, but this has been difficult to dissect because of the difficulty in manipulating centromere in cells. Extracts from Xenopus laevis eggs are able to assemble centromeres and kinetochores in vitro and thus provide a useful system for studying the role of centromeric DNA in centromere formation. However centromeric sequences in X. laevis have not been extensively characterized.. In this study we characterize repeat sequences found at X. laevis centromeres. We utilize a k-mer based approach in order to uncover the previously unknown diversity of X. laevis centromeric sequences. We validate centromere localization of repeat sequences by in situ hybridization and identify the location of the centromeric repetitive array on each chromosome by mapping the distribution of centromere enriched k-mers on the Xenopus genome. Our identification of X. laevis centromere sequences enables previously unapproachable genomic studies of centromeres. The k-mer based approach that we used to investigate centromeric repetitive DNA is suitable for the analysis of other repetitive sequences found across the genome or the study of repeats in other organisms.
Project description:In mammals, DNA methylation is essential for protecting repetitive sequences from aberrant transcription, translocation, and homologous recombination. However, DNA hypomethylation occurs during specific developmental stages (e.g. preimplantation embryos) and in certain cell types (e.g., primordial germ cells). The absence of dysregulated repetitive elements in these cells suggests the existence of alternative mechanisms that prevent genome instability triggered by DNA hypomethylation. In this report, we seek to elucidate the factors that play a critical role in ensuring genome stability by focusing on DAXX and ATRX, two proteins that have been linked to transcriptional control and epigenetic regulation. We carried out ChIP-seq and RNA-seq analyses to compare the genome-wide binding and transcriptome profiles of DAXX and ATRX in mouse ES (mES) cells triple knocked out for the three mammalian DNA methyltransferases (DNMTs) (TKO cells) to those in wildtype mES cells. Our data indicate that DAXX and ATRX are distinct in their chromatin-binding profiles and highly co-enriched at tandem repetitive elements. Global DNA hypomethylation, as was the case in TKO cells, further promoted the recruitment of the DAXX/ATRX complex to tandem repeat sequences including IAP (intracisternal A‐particle) retrotransposons and telomeres. Inhibition of DAXX or ATRX in cells with hypomethylated genomes (e.g., TKO cells, mES cells cultured in ground-state conditions, and preimplantation embryos) increased aberrant transcriptional de-repression of repeat elements and dysfunction at telomeres. Furthermore, we provide evidence that DAXX/ATRX-dependent silencing may occur through DAXX’s interaction with SUV39H1 and increased H3K9me3 on repetitive sequences. Our study suggests that DAXX and ATRX are important for safeguarding the genome, particularly in silencing repetitive elements in the absence of DNA methylation. We tested the hypothesis that the DAXX/ATRX complex participates in protecting repetitive elements in the absence of DNA methylation. To this end, we investigated genome-wide chromatin targeting of DAXX and ATRX in wildtype mES cells, and in mES cells that exhibit extensive loss of DNA methylation due to homozygous knockout of all three DNA.
Project description:Candida albicans repetitive elements display epigenetic diversity and plasticity. This experiment inspects RNA levels on both wild- type (BWP17 strain) and sir double deletion mutant strain in order to detect changes in gene expression associated with SIR2-dependent heterochromatin patterns.
Project description:DNA methylation is an essential epigenetic modification, present in both unique DNA sequences and repetitive elements, but its exact function in repetitive elements remains obscure. Here, we describe the genome-wide comparative analysis of the 5mC, 5hmC, 5fC and 5caC profiles of repetitive elements in mouse embryonic fibroblasts and mouse embryonic stem cells. We provide evidence for distinct and highly specific DNA methylation/oxidation patterns of the repetitive elements in both cell types, which mainly affect CA repeats and evolutionary conserved mouse-specific transposable elements including IAP-LTRs, SINEs B1m/B2m and L1Md-LINEs. DNA methylation controls the expression of these retro-elements, which are clustered at specific locations in the mouse genome. We show that TDG is implicated in the regulation of their unique DNA methylation/oxidation signatures and their dynamics. Our data suggest the existence of novel epigenetic code for the most recently acquired evolutionary conserved repeats that could play a major role in cell differentiation.
Project description:DNA methylation is an essential epigenetic modification, present in both unique DNA sequences and repetitive elements, but its exact function in repetitive elements remains obscure. Here, we describe the genome-wide comparative analysis of the 5mC, 5hmC, 5fC and 5caC profiles of repetitive elements in mouse embryonic fibroblasts and mouse embryonic stem cells. We provide evidence for distinct and highly specific DNA methylation/oxidation patterns of the repetitive elements in both cell types, which mainly affect CA repeats and evolutionary conserved mouse-specific transposable elements including IAP-LTRs, SINEs B1m/B2m and L1Md-LINEs. DNA methylation controls the expression of these retro-elements, which are clustered at specific locations in the mouse genome. We show that TDG is implicated in the regulation of their unique DNA methylation/oxidation signatures and their dynamics. Our data suggest the existence of novel epigenetic code for the most recently acquired evolutionary conserved repeats that could play a major role in cell differentiation. This SuperSeries is composed of the SubSeries listed below.