Project description:Certain strains of the intracellular endosymbiont Wolbachia can strongly inhibit or block the transmission of viruses such as dengue by Aedes mosquitoes, and the mechanisms responsible are still not well understood. Direct infusion and liquid chromatography FT-ICR mass spectrometry based lipidomicse DIMS and LCMS analyses were conducted using Aedes albopictus Aa23 cells that were infected with the wMel and wMelPop strains of Wolbachia compared to uninfected cells. Substantial shifts in the cellular lipid profile were apparent in the presence of Wolbachia. Most significantly, sphingolipids were depleted across all classes, and some reduction in diacylglyerol fatty acids and phosphatidylcholines was also observed. These lipid classes have previously been shown to be selectively enriched in DENV-infected mosquito cells, suggesting that Wolbachia may produce a cellular lipid environment that is antagonistic to viral replication. The data improve understanding of the intracellular interactions between Wolbachia and mosquitoes.
Project description:To determine codon optimality in Aedes Albopictus C6/36 cells, we blocked transcription using three independent transcription inhibitors (5,6-Dichlorobenzimidazole 1-β-D-ribofuranoside (DRB), Flavopiridol and Triptolide) and measured the RNA level at 6 hours post treatment using RNA-seq.