Project description:A subset of post-infection irritable bowel syndrome (PI-IBS) patients have elevated, or high fecal proteolytic activity (PA). Fecal PA has been shown to correlate with increased symptom severity as well as lower quality of life scores, increased fecal output and increased intestinal permeability. To address the underlying mechanisms of barrier disruption as a consequence of high fecal PA, colonic biopsies were collected from healthy individuals PI-IBS patients (n=11). Individuals diagnosed with PI-IBS were further divided in to 2 subgroups, high PA and low PA as defined by the PA in matched fecal samples. RNA was extracted from the biopsies for bulk RNA sequencing to understand transcriptional differences between healthy and high PA PI-IBS patients as well as high PA and Low PA PI-IBS patients.
2021-12-31 | GSE168759 | GEO
Project description:Fecal bacteriome and virome community analysis
Project description:The study aimed to investigate molecular signatures in peripheral blood of individuals affected by metabolic syndrome (MetS) and different degrees of obesity. Metabolic health of 1204 individuals was assessed, and 32 subjects were recruited to four study groups: MetS lean, MetS obese, “healthy obese” and healthy lean. Whole-blood transcriptome next generation sequencing with functional data analysis was carried out.
Project description:Habitual exercise modulates the composition of the intestinal microbiota. We examined whether transplanting fecal microbiota from trained mice improved skeletal muscle metabolism in high-fat diet-fed mice. The recipient mice that received fecal samples from trained donor mice for 1 week showed elevated levels of metabolic signalings in skeletal muscle. Glucose tolerance was improved by fecal microbiota transplantation after 8 weeks of HFD administration. Intestinal microbiota may mediate exercise-induced metabolic improvement in mice. We performed a microarray analysis to compare the metabolic gene expression profiles in the skeletal muscle from each mouse.
2022-06-30 | GSE201202 | GEO
Project description:Sterile faecal filtrate transplantation alters phage-microbe dynamics in individuals with metabolic syndrome
Project description:We report miRNA profiling in patients with Alström syndrome (ALMS) and Bardet-Biedl syndrome (BBS). The aim of this study was to determine if the expression of circulating miRNAs in patients with ALMS and BBS differs from that in healthy and obese individuals and determine if miRNA levels correlate with metabolic tests, BMI-SDS and patient age.
Project description:Obese individuals without metabolic comorbidities are categorized as metabolically healthy obese (MHO). MicroRNAs (miRNAs) may be implicated in MHO. This cross-sectional study explores the link between circulating miRNAs and the main components of metabolic syndrome (MetS) in the context of obesity. We also examine oxidative stress biomarkers in MHO vs. metabolically unhealthy obesity (MUO).
Project description:This study aimed to analyze changes in gut microbiota composition in mice after transplantation of fecal microbiota (FMT, N = 6) from the feces of NSCLC patients by analyzing fecal content using 16S rRNA sequencing, 10 days after transplantation. Specific-pathogen-free (SPF) mice were used for each experiments (N=4) as controls.