Project description:The conductive pili of Geobacter sulfurreducens are essential for optimal extracellular electron transfer to Fe(III) and long-range electron transport through current-producing biofilms. The KN400 strain of G. sulfurreducens reduces poorly crystalline Fe(III) oxide more rapidly than the more extensively studied DL-1 strain. Deletion of the gene for PilA, the structural pilin protein, in strain KN400 inhibited Fe(III) oxide reduction. However, slow rates of Fe(III) reduction were detected after extended (> 30 days) incubation in the presence of Fe(III) oxide. After seven consecutive transfers the PilA-deficient strain adapted to reduce Fe(III) oxide as fast as the wild type. Microarray, proteomic, and gene deletion studies indicated that this adaptation was associated with greater production of the c-type cytochrome PgcA, which was released into the culture medium. It is proposed that the extracellular cytochrome acts as an electron shuttle, promoting electron transfer from the outer cell surface to Fe(III) oxides. The adapted PilA-deficient strain competed well with the wild-type strain when both were grown together on Fe(III) oxide. However, when 50% of the culture medium was replaced with fresh medium every three days, the wild-type strain out-competed the adapted strain. A possible explanation for this is that the necessity to produce additional PgcA, to replace the PgcA continually removed, put the adapted strain at a competitive disadvantage, similar to the apparent selection against electron-shuttling producing Fe(III) reducers in most soils and sediments. Despite increased extracellular cytochrome production, the adapted PilA-deficient strain produced low levels of current; consistent with the concept that long-range electron transport through G. sulfurreducens biofilms cannot be achieved without PilA-pili. An eight-chip study using total RNA recovered from four separate cultures of Geobacter sulfurreducens JS-1 (experimental condition) or Geobacter sulfurreducens KN400 (control condition) grown with acetate (10mM)-Fe(III) oxide (100 mmol l-1) exponential growth. Each chip measures the expression level of 3,328 genes from Geobacter sulfurreducens KN400 with nine 45-60-mer probe pairs (PM/MM) per gene, with three-fold technical redundancy.
Project description:Geobacter sulfurreducens is a dissimilatory metal-reducing bacterium capable of forming thick electron-conducting biofilms on solid electrodes in the absence of alternative electron acceptors. The remarkable ability of such biofilms to transfer electrons, liberated from soluble organic electron donors, over long distances has attracted scientific interest as to the mechanism for this process, and technological interest for application to microbial fuel and electrolysis cells and sensors. Here, we employ comparative proteomics to identify key metabolic pathways involved in G. sulfurreducens respiration by planktonic cells versus electron-conducting biofilms, in an effort to elucidate long-range electron transfer mechanisms.
Project description:This SuperSeries is composed of the following subset Series: GSE22497: Transcriptome analysis of Geobacter sulfurreducens under multiple growth conditions GSE22503: ChIP-chip of Geobacter sulfurreducens PCA with antibody against RNAP and RpoD under various conditions GSE22511: Genome-wide transcription start site determination of Geobacter sulfurreducens under multiple growth conditions Refer to individual Series
Project description:In this study we further investigate the previously observed syntrophic interaction between Geobacter sulfurreducens and Pseudomonas aeruginosa. In early coculture establishment, two genetic variants of G. sulfurreducens emerged that were strongly selected for throughout coculture evolution. Single nucleotide polymorphism (SNP) variants occurred in fabI and tetR genes of G. sulfurreducens. The tetR variants displayed upregulation of adenylate cyclase transporter, CyaE and of RND efflux pump proteins as determined through SWATH-MS proteomics.
Project description:Previous studies demonstrated that an outer membrane c-type cytochrome, OmcB (GSU_2737), was involved in Fe(III) reduction in Geobacter sulfurreducens. An OmcB-deficient mutant was greatly impaired in its ability to reduce both soluble and insoluble Fe(III). Reintroducing omcB restored the capacity for Fe(III) reduction at a level proportional to the level of OmcB production. Here, we report that the OmcB-deficient mutant gradually adapted to grow on soluble Fe(III) but not insoluble Fe(III). The adapted OmcB-deficient mutant reduced soluble Fe(III) at a rate comparable to that of the wild type, but the cell yield of the mutant was only ca. 60% of that of the wild type under steady-state culturing conditions. Analysis of proteins and transcript levels demonstrated that expression of several membrane-associated cytochromes was higher in the adapted mutant than in the wild type. Further comparison of transcript levels during steady-state growth on Fe(III) citrate with a whole-genome DNA microarray revealed a significant shift in gene expression in an apparent attempt to adapt metabolism to the impaired electron transport to Fe(III). These results demonstrate that, although there are many other membrane-bound c-type cytochromes in G. sulfurreducens, increased expression of these cytochromes cannot completely compensate for the loss of OmcB. The concept that outer membrane cytochromes are promiscuous reductases that are interchangeable in function appears to be incorrect. Furthermore, the results indicate that there may be different mechanisms for electron transfer to soluble Fe(III) and insoluble Fe(III) oxides in G. sulfurreducens, which emphasizes the importance of studying electron transport to the environmentally relevant Fe(III) oxides. (From Leang C, Adams LA, Chin KJ, Nevin KP, Methé BA, Webster J, Sharma ML, Lovley DR. Adaptation to disruption of the electron transfer pathway for Fe(III) reduction in Geobacter sulfurreducens. J Bacteriol. 2005 Sep;187(17):5918-26.) Keywords: Geobacter, gene expression, genetic modification