Project description:Tissue specificity is a fundamental property of an organ that affects numerous biological processes, including aging and longevity, and is regulated by the circadian clock. However, the distinction between circadian-affected tissue specificity and other tissue specificities remains poorly understood. Here, using multi-omics data on circadian rhythms in mice, we discovered that approximately 35% of tissue-specific genes are directly affected by circadian regulation. These circadian-affected tissue-specific genes have higher expression levels and are associated with metabolism and hepatocyte cells. They also exhibit specific features in long-reads sequencing data. Notably, these genes are associated with aging and longevity at both the gene level and at the network module level. The expression of these genes oscillates in response to caloric and time-restricted feeding regimens, which have been demonstrated to promote longevity. In addition, aging and longevity genes are disrupted in various circadian disorders. Our study indicates that the modulation of circadian-affected tissue specificity is essential for understanding the circadian mechanisms that regulate aging and longevity at the genomic level.
Project description:Tissue specificity is a fundamental property of an organ that affects numerous biological processes, including aging and longevity, and is regulated by the circadian clock. However, the distinction between circadian-affected tissue specificity and other tissue specificities remains poorly understood. Here, using multi-omics data on circadian rhythms in mice, we discovered that approximately 35% of tissue-specific genes are directly affected by circadian regulation. These circadian-affected tissue-specific genes have higher expression levels and are associated with metabolism and hepatocyte cells. They also exhibit specific features in long-reads sequencing data. Notably, these genes are associated with aging and longevity at both the gene level and at the network module level. The expression of these genes oscillates in response to caloric and time-restricted feeding regimens, which have been demonstrated to promote longevity. In addition, aging and longevity genes are disrupted in various circadian disorders. Our study indicates that the modulation of circadian-affected tissue specificity is essential for understanding the circadian mechanisms that regulate aging and longevity at the genomic level.
Project description:Organisms use endogenous clocks to adapt to the rhythmicity of the environment and to synchronize social activities. Although circadian rhythms have been implicated in multiple aspects of aging, it remains uncertain whether evolutionary selection of circadian cycle gene variants contributes to changes in longevity and aging traits within animal populations. We have sequenced the genomes of Drosophila melanogaster strains with exceptional longevity that were obtained via multiple rounds of selection for reduced senescence from a parental strain. Preservation of youthful muscle gene expression and function is seen during aging in these strains and is primarily due to intergenic polymorphisms rather than to mutations in coding sequences. Expression of transcriptional regulators of the circadian machinery is highly modulated, with higher period and timeless and lower cycle expression in strains with delayed aging compared to the parental strain. These changes in the expression of circadian core components associate with changes in the amplitude and specificity of the circadian transcriptome. Moreover, a muscle-specific increase in timeless expression to levels similar to long-lived lines extends lifespan. Altogether, these findings indicate that circadian clock gene variants contribute to shaping aging traits and to the evolutionarily divergence in longevity within a species.
Project description:Mammals differ more than 100-fold in maximum lifespan. Here, we conducted comparative transcriptomics on 26 species with diverse lifespans. We identified thousands of genes with expression levels negatively or positively correlated with a species' maximum lifespan (Neg- or Pos-MLS genes). Neg-MLS genes are primarily involved in energy metabolism and inflammation. Pos-MLS genes show enrichment in DNA repair, microtubule organization, and RNA transport. Expression of Neg- and Pos-MLS genes is modulated by interventions, including mTOR and PI3K inhibition. Regulatory networks analysis showed that Neg-MLS genes are under circadian regulation possibly to avoid persistent high expression, whereas Pos-MLS genes are targets of master pluripotency regulators OCT4 and NANOG and are upregulated during somatic cell reprogramming. Pos-MLS genes are highly expressed during embryogenesis but significantly downregulated after birth. This work provides targets for anti-aging interventions by defining pathways correlating with longevity across mammals and uncovering circadian and pluripotency networks as central regulators of longevity.
Project description:Caloric restriction (CR) prolongs lifespan, yet the mechanisms by which it does so remain poorly understood. Under CR, mice self-impose chronic cycles of 2-hour-feeding and 22-hour-fasting, raising the question whether calories, fasting, or time of day are causal. We show that 30%-CR is sufficient to extend lifespan 10%; however, a daily fasting interval and circadian-alignment of feeding act together to extend lifespan 35% in male C57BL/6J mice. These circadian effects of CR are independent of fasting duration and body weight. Aging induces widespread increases in gene expression associated with inflammation and decreases in expression of genes encoding components of metabolic pathways in liver from ad lib fed mice. CR at night ameliorates these aging-related changes. Thus, circadian interventions promote longevity and provide a perspective to further explore mechanisms of aging.
Project description:Circadian gene variants and the skeletal muscle circadian clock contribute to the evolutionary divergence in longevity across Drosophila populations