Project description:We have used microarrays to identify genes expressed and required for the second mitotic wave (SMW) during eye development. Eye discs expressing Spitz under the control of GMR Gal4 have no SMW as Spitz promotes G1 arrest, ectopic differentiation also occures. To control for the ectopic differentiation, Spi expressing eye antennal discs were compared to eye antennal discs expressing activated RasV12. In discs expresseding RasV12 under the control of GMRGal4 the SMW takes place normally prior to any ectopic differentiation. We used microarrays to detail the global programme of gene expression underlying cellularisation and identified distinct classes of up-regulated genes during this process. Experiment Overall Design: Drosophila eye antennal imaginal discs expressing either UAS RasV12 or UAS Spi under the control of GMRGal4 were dissected from 3rd instar larvae for RNA extraction and hybridization on Affymetrix microarrays.
Project description:We have used microarrays to identify genes expressed and required for the second mitotic wave (SMW) during eye development. Eye discs expressing Spitz under the control of GMR Gal4 have no SMW as Spitz promotes G1 arrest, ectopic differentiation also occures. To control for the ectopic differentiation, Spi expressing eye antennal discs were compared to eye antennal discs expressing activated RasV12. In discs expresseding RasV12 under the control of GMRGal4 the SMW takes place normally prior to any ectopic differentiation. We used microarrays to detail the global programme of gene expression underlying cellularisation and identified distinct classes of up-regulated genes during this process. Keywords: Comparison of eye antennal discs of two different over expression genotypes
Project description:The aim of this data set is to perform a differential expression analysis between wild type eye-antennal imaginal disc and discs that are homozygous glass mutant gl[60j]. This data set is used to validate Glass target gene predictions identified by i-cisTarget on a set of conserved eye-specific genes. RNA-seq was performed in eye-antennal imaginal discs of two D.melanogaster wild-type strains (Canton S and strain RAL-208 (Jordan et al. 2007, Ayroles et al. 2009)), representing two biological replicates; and in glass mutant (gl[60j]) discs for two technical replicates.
Project description:The aim of this data set is to perform a differential expression analysis between wild type eye-antennal imaginal disc and discs that are homozygous glass mutant gl[60j]. This data set is used to validate Glass target gene predictions identified by i-cisTarget on a set of conserved eye-specific genes.
Project description:In order to study how ectopic Yki drives tissue overgrowth in Drosophila imaginal discs, we overexpressed the constitutively active Yki3SA and deleted wts in clones of cells in the entire eye-antennal imaginal disc, as well as specifically in eye disc proper cells using Optix-Gal4. Using the MARCM system allowed us to compare the effects of Yki3SA overexpression in wild-type and sd mutant clones.
Project description:The goal of this study was to examine chromosome topology in Drosophila larval eye and antennal discs by identifying topologically associating domains (TADs) across the genome. TADs were compared between the eye and antennal disc to determine whether they contribute to cell-type-specific homologous pairing and transvection.
Project description:Genomic enhancers regulate spatio-temporal gene expression by recruiting specific combinations of transcription factors (TFs). When TFs are bound to active regulatory regions, they displace canonical nucleosomes, making these regions biochemically detectable as nucleosome-depleted regions or accessible/open chromatin. Here we ask whether open chromatin profiling can be used to identify the entire repertoire of active promoters and enhancers underlying tissue-specific gene expression during normal development and oncogenesis in vivo. To this end, we first compare two different approaches to detect open chromatin in vivo using the Drosophila eye primordium as a model system: FAIRE-seq, based on physical separation of open versus closed chromatin; and ATAC-seq, based on preferential integration of a transposon into open chromatin. We find that both methods reproducibly capture the tissue-specific chromatin activity of regulatory regions, including promoters, enhancers, and insulators. Using both techniques, we screened for regulatory regions that become ectopically active during Ras-dependent oncogenesis, and identified 3778 regions that become (over-)activated during tumor development. Next, we applied motif discovery to search for candidate transcription factors that could bind these regions and identified AP-1 and Stat92E as key regulators. We validated the importance of Stat92E in the development of the tumors by introducing a loss of function Stat92E mutant, which was sufficient to rescue the tumor phenotype. Additionally we tested if the predicted Stat92E responsive regulatory regions are genuine, using ectopic induction of JAK/STAT signaling in developing eye discs, and observed that similar chromatin changes indeed occurred. Finally, we determine that these are functionally significant regulatory changes, as nearby target genes are up- or down-regulated. In conclusion, we show that FAIRE-seq and ATAC-seq based open chromatin profiling, combined with motif discovery, is a straightforward approach to identify functional genomic regulatory regions, master regulators, and gene regulatory networks controlling complex in vivo processes. FAIRE-Seq in Drosophila wild type eye-antennal imaginal discs (2 wt strains); ATAC-Seq in Drosophila wild type eye-antennal imaginal discs (3 wt strains) ; FAIRE-Seq in Drosophila Ras/Scrib induced eye disc tumors (1 early and 1 late); ATAC-Seq in Drosophila Ras/Scrib induced eye disc tumors (1 early and 1 late); ATAC-Seq in Drosophila eye discs with Unpaired over-expression (2 biological replicates); CTCF ChIP-seq in Drosophila eye discs; ChIP-seq input in Drosophila eye discs