Project description:In order to study how ectopic Yki drives tissue overgrowth in Drosophila imaginal discs, we overexpressed the constitutively active Yki3SA and deleted wts in clones of cells in the entire eye-antennal imaginal disc, as well as specifically in eye disc proper cells using Optix-Gal4. Using the MARCM system allowed us to compare the effects of Yki3SA overexpression in wild-type and sd mutant clones.
Project description:The aim of this data set is to perform a differential expression analysis between wild type eye-antennal imaginal disc and discs that are homozygous glass mutant gl[60j]. This data set is used to validate Glass target gene predictions identified by i-cisTarget on a set of conserved eye-specific genes.
Project description:The aim of this data set is to perform a differential expression analysis between wild type eye-antennal imaginal disc and discs that are homozygous glass mutant gl[60j]. This data set is used to validate Glass target gene predictions identified by i-cisTarget on a set of conserved eye-specific genes. RNA-seq was performed in eye-antennal imaginal discs of two D.melanogaster wild-type strains (Canton S and strain RAL-208 (Jordan et al. 2007, Ayroles et al. 2009)), representing two biological replicates; and in glass mutant (gl[60j]) discs for two technical replicates.
Project description:Drosophila imaginal disc cells exhibit a remarkable ability to switch cell fates under various perturbations, a phenomenon known as transdetermination (TD). The winged eye (wge) gene induces eye-to-wing TD by its overexpression in eye imaginal discs using eye specific Gal4 driver (eyeless-Gal4). Gene network controlling this process, however, is largely unclear. Additionally, we identified that heterochromatin-related histone methyltransferase Su(var)3-9 is essential for wge-mediated TD. We used microarray to detail the global gene network underlying wge-mediated eye-to-wing TD, and the involvement of Su(var)3-9 in the gene network.
Project description:The goal of this study was to examine chromosome topology in Drosophila larval eye and antennal discs by identifying topologically associating domains (TADs) across the genome. TADs were compared between the eye and antennal disc to determine whether they contribute to cell-type-specific homologous pairing and transvection.
Project description:Growth of the drosophila eye imaginal discs is controlled by the activation of Notch in the dorsal-ventral boundary. Overexpression in the eye disc of the Notch ligand Delta together with lola and pipsqueak from the GS(2)88A8 line induces tumoral growth. We used microarray to analyze the expression profile of tumoral discs. Antennal-eye discs of Drosophila L3 larvae were selected for RNA extraction and hybridization on Affymetrix microarrayas. Two genetic conditions were analyzed: tumoral eye discs (ey-Gal4 GS(2)88A8 UAS-Dl) and control eye discs (GS(2)88A8 UAS-Dl). Three different biological replicates of each condition, each one consisting on 300 hundred pairs of eye discs, were analyzed.
Project description:The goal of this study was to examine RNA expression levels in the Drosophila larval eye and antennal discs and determine whether higher levels of transcription were correlated with the ability of transgenes to drive pairing with their homologous endogenous loci between chromosomes. Additionally, RNA expression levels were compared between the eye and antennal discs to determine whether increased insulator protein expression contributed to increased pairing in the eye disc.