Project description:Phytoplankton blooms provoke bacterioplankton blooms, from which bacterial biomass (necromass) is released via increased zooplankton grazing and viral lysis. While bacterial consumption of algal biomass during blooms is wellstudied, little is known about the concurrent recycling of these substantial amounts of bacterial necromass. We demonstrate that bacterial biomass, such as bacterial alpha-glucan storage polysaccharides, generated from the consumption of algal organic matter, is reused and thus itself a major bacterial carbon source in vitro and during a diatom-dominated bloom. We highlight conserved enzymes and binding proteins of dominant bloom-responder clades that are presumably involved in the recycling of bacterial alpha-glucan by members of the bacterial community. We furthermore demonstrate that the corresponding protein machineries can be specifically induced by extracted alpha-glucan-rich bacterial polysaccharide extracts. This recycling of bacterial necromass likely constitutes a large-scale intra-population energy conservation mechanism that keeps substantial amounts of carbon in a dedicated part of the microbial loop.
2024-05-14 | PXD043390 | Pride
Project description:Algal bloom study in Tongyoung and Yeosu
Project description:<p>Algal blooms are hotspots of primary production in the ocean, forming the basis of the marine food web and fueling the dissolved organic matter (DOM) pool. Marine viruses are key players in controlling algal bloom demise, thereby diverting algal biomass from higher trophic levels to the DOM pool, a process termed the ‘viral shunt’. To decode the metabolic footprint of the ‘viral shunt’ in the marine environment, we induced a bloom of <em>Emiliania huxleyi</em> and followed its succession using an untargeted exometabolomics approach. Here, we show that algal bloom succession induces dynamic changes in the exometabolic landscape. We discovered a set of novel chlorine-iodine-containing metabolites that were induced by viral infection and released during bloom demise. These metabolites were further detected in virus-infected oceanic <em>E. huxleyi</em> blooms. Therefore, we propose that halogenation with both chlorine and iodine is a distinct hallmark of the virus-induced DOM of <em>E. huxleyi</em>, providing insights into the metabolic consequences of the ‘viral shunt’ for marine DOM.</p>
Project description:The files used in this massive dataset are part of an interlab comparison study, where different laboratories around the world analysed the same environmental samples on their respective LC-MS/MS equipments. To simulate algal bloom, standardized algae extracts (A) in marine dissovled organic matter (M) at different concentrations were prepared (450 (A45M), 150 (A15M), and 50 (A5M) ppm A).
Project description:In this project, the metaproteome of the marine bacterioplankton was analyzed to assess its respone towards an algal bloom in the southern North Sea in spring 2010. Proteins were extracted applying two different methods: (i) applying chemical cell lysis using trifluoroethanol in combination with in-solution digest and (ii) mechanical cell lysis applying bead beating, SDS-PAGE prefractionation and in-gel digest. Both samples were analyzed by nanoLC and ESI-iontrap MS. In case of the TFE lysis samples, also nanoLC-MALDI-TOF MS was applied.