Project description:This study will evaluate the safety and tolerability of a personalized live, attenuated, double-deleted Listeria monocytogenes (pLADD) treatment in adults with metastatic colorectal cancer.
Project description:Listeria monocytogenes is a human, food-borne pathogen. Genomic comparisons between L. monocytogenes and Listeria innocua, a closely related non-pathogenic species, were pivotal in the identification of protein coding genes essential for virulence. However, no comprehensive comparison has focused on the non-coding genome. We used strand-specific cDNA sequencing to produce genome-wide transcription start site (TSS) maps for both organisms, and developed a publicly available integrative browser to visualize and analyze both transcriptomes in different growth conditions and genetic backgrounds. Our data revealed conservation across most transcripts, but significant divergence between the species in a subset of non-coding RNAs. In L. monocytogenes we identified 113 sRNAs and 70 asRNAs, significantly increasing the repertoire of non coding RNAs in this species. Remarkably, we identified a class of long antisense transcripts (lasRNAs) that overlap one gene while also serving as the 5M-bM-^@M-^Y UTR of the adjacent divergent gene. Experimental evidence suggests that lasRNAs transcription inhibits expression of one operon while activating the expression of another. Such lasRNA/operon structure, termed "excludon", might represent a novel form of regulation in bacteria. Construction of consensus TSS-maps in Listeria monocytogenes and Listeria innocua by applying 5'-end sequencing on samples in different conditions and genetic backgrounds.
Project description:Beneficial bacteria with antibacterial properties are an attractive alternative to chemical-based antibacterial or bactericidal agents. The aim of our study was to source such bacteria from horticultural produce and environments and to explore the mechanisms of their antimicrobial properties. Four strains of Pseudomonas fluorescens were isolated that possessed antibacterial activity against the pathogen Listeria monocytogenes.
Project description:Several Toll-like receptors are activated by Listeria monocytogenes infection, resulting in the activation of MyD88 dependent signaling pathway. However, the negative role of MyD88 in gene expresson is unclear. To address this, we performed microarray analysis of mRNAs from WT or MyD88-/- peritoneal macrophages infected with Listeria monocytogenes.
Project description:DNA damage response kinase ATM regulates the genetic program of lymphocytes with phsiologically induced DNA DSBs. In bone marrow-derived macrophages, related kinase DNAPKcs is also responsible for activating DNA damage responses after infection with Listeria monocytogenes. Here we show that both ATM and DNA-PKcs regulate the genetic program of Listeria monocytogenes-infected macrophages.
Project description:Transcriptional profling of a Listeria monocytogenes under nisin treatment comparing ctsR mutant and wild type one condition (nisin treament 20ug/ml, 24 hours) experiment, ctsR mutant vs. wild type Listeria monocytogenes Scott A, 2 biological replicates, 4 technical replicates
Project description:Listeria monocytogenes is a human, food-borne pathogen. Genomic comparisons between L. monocytogenes and Listeria innocua, a closely related non-pathogenic species, were pivotal in the identification of protein coding genes essential for virulence. However, no comprehensive comparison has focused on the non-coding genome. We used strand-specific cDNA sequencing to produce genome-wide transcription start site (TSS) maps for both organisms, and developed a publicly available integrative browser to visualize and analyze both transcriptomes in different growth conditions and genetic backgrounds. Our data revealed conservation across most transcripts, but significant divergence between the species in a subset of non-coding RNAs. In L. monocytogenes we identified 113 sRNAs and 70 asRNAs, significantly increasing the repertoire of non coding RNAs in this species. Remarkably, we identified a class of long antisense transcripts (lasRNAs) that overlap one gene while also serving as the 5’ UTR of the adjacent divergent gene. Experimental evidence suggests that lasRNAs transcription inhibits expression of one operon while activating the expression of another. Such lasRNA/operon structure, termed "excludon", might represent a novel form of regulation in bacteria.
Project description:DNA damage response kinase ATM regulates the genetic program of lymphocytes with phsiologically induced DNA DSBs. In bone marrow-derived macrophages, related kinase DNAPKcs is also responsible for activating DNA damage responses after infection with Listeria monocytogenes. Here we show that both ATM and DNA-PKcs regulate the genetic program of Listeria monocytogenes-infected macrophages. Two independent bone marrow-derived macrophage cultures for each genotype (LysMcre/+ and Scid: Atmc/c: LysMcre/+) were infected with Listeria monocytogenes for 24 hrs at an MOI of 5. RNA was isolated using RNeasy (Qiagen). Gene expression profiling was performed using Illumina MouseRef-8 expression microarrays.