Project description:We used Affymetrix microarrays to investigate gene expression changes in somatic cells from breast-milk extracted from women suffering from mastitis and taking a daily dose of three capsules with ~50 mg of a freeze-dried probiotic (~109 CFU of L. salivarius PS2 strain) for 21 days. Healthy women were subjected to the same treatment for comparison. The aim of this work was to determine whether the daily intake of a probiotic strain for a total of 21 days exerted any modulatory effects, at the level of gene expression, in somatic cells from breast-milk in women with mastitis. Women were divided into 2 groups: mastitis and healthy. Total RNA was extracted from breast-milk isolated cells obtained from 10 participants (7 women from the mastitis group and 3 women from the healthy group) at day 0 (initial) and after 21 days (final) to compare differential gene expression between the groups. Differential gene expression after 21 days of the study for each group: mastitis and healthy
Project description:Background: S. aureus is one of the main pathogen involved in ruminant mastitis worldwide. The severity of staphylococcal infection is highly variable and ranges from subclinical to gangrenous mastitis. Such variability implies host as well as staphylococcal factors. This work is an in-depth characterization of S. aureus mastitis isolates to identify factors involved in mastitis severity. Methods and findings: We combined three “omic” approaches to comprehensively compare two clonally related S. aureus strains that were isolated from and shown to reproducibly induce severe (strain O11) and milder (strain O46) mastitis in ewes. The genomes of O11 and O46 were sequenced (Illumina technology) to determine their respective gene content and comparative transcriptomic and proteomic analyses were carried out on both strains grown in conditions mimicking mastitis context. High differences were highlighted in mobile genetic elements, iron acquisition and metabolism, transcriptional regulation and exoprotein production. In particular, O11 overproduced exoproteins, including toxins and proteases when compared to O46. This was confirmed in 4 other S. aureus strains isolated from subclinical or clinical mastitis cases. Dose-dependant production of some staphylococcal factors seem to play a role in hypervirulence of strains isolated from severe mastitis. Mobile genetic elements, transcriptional regulators, exoproteins or strain ability to deal with iron starvation constitute good targets for further research to better define the underlying mechanisms of mastitis severity. Conclusions: Differences observed in mastitis severity likely result from the ability of the strains to adapt and to express virulence factors in the mastitis context rather than from deep variations in gene content.
Project description:Background: S. aureus is one of the main pathogen involved in ruminant mastitis worldwide. The severity of staphylococcal infection is highly variable and ranges from subclinical to gangrenous mastitis. Such variability implies host as well as staphylococcal factors. This work is an in-depth characterization of S. aureus mastitis isolates to identify factors involved in mastitis severity. Methods and findings: We combined three “omic” approaches to comprehensively compare two clonally related S. aureus strains that were isolated from and shown to reproducibly induce severe (strain O11) and milder (strain O46) mastitis in ewes. The genomes of O11 and O46 were sequenced (Illumina technology) to determine their respective gene content and comparative transcriptomic and proteomic analyses were carried out on both strains grown in conditions mimicking mastitis context. High differences were highlighted in mobile genetic elements, iron acquisition and metabolism, transcriptional regulation and exoprotein production. In particular, O11 overproduced exoproteins, including toxins and proteases when compared to O46. This was confirmed in 4 other S. aureus strains isolated from subclinical or clinical mastitis cases. Dose-dependant production of some staphylococcal factors seem to play a role in hypervirulence of strains isolated from severe mastitis. Mobile genetic elements, transcriptional regulators, exoproteins or strain ability to deal with iron starvation constitute good targets for further research to better define the underlying mechanisms of mastitis severity. Conclusions: Differences observed in mastitis severity likely result from the ability of the strains to adapt and to express virulence factors in the mastitis context rather than from deep variations in gene content. Expression of S. aureus O46 from subclinical mastitis and O11 from a lethal gangrenous mastitis were compared at two different times
Project description:The present work describes LC-ESI-MS/MS analyses of tryptic digestion peptides from phages that infect Staphylococcus aureus-causing mastitis, and isolated from dairy products. A total of 1935 non-redundant peptides belonging to 1282 proteins were identified and analyzed. Among them, 80 staphylococcal peptides from phages were confirmed. These peptides belong to proteins such as phage repressors, structural phage proteins, uncharacterized phage proteins and complement inhibitors. Moreover, of the phage origin peptides found, eighteen of them were specific to S. aureus strains. These diagnostic peptides could be useful for the identification and characterization of S. aureus strains that cause mastitis. Furthermore, a study of bacteriophage phylogeny and the relationship among the identified phage peptides and the bacteria they infect was also performed. The results show the specific peptides which are present in closely related phages, and the existing links between bacteriophage phylogeny and the respective Staphylococcus spp. infected.
Project description:We used Affymetrix microarrays to investigate gene expression changes in somatic cells from breast-milk extracted from women suffering from mastitis and taking a daily dose of three capsules with ~50 mg of a freeze-dried probiotic (~109 CFU of L. salivarius PS2 strain) for 21 days. Healthy women were subjected to the same treatment for comparison.
2015-01-21 | GSE65152 | GEO
Project description:Probiotic bacterial use to prevent Mastitis
Project description:Background: Based on 32 Escherichia coli and Shigella genome sequences, we have developed an E. coli pan-genome microarray. Publicly available genomes were annotated in a consistent manor to define all currently known genes potentially present in the species. The chip design was evaluated by hybridization of DNA from two sequenced E. coli strains, K-12 MG1655 (a commensal) and O157:H7 EDL933 (an enterotoxigenic E. coli). A dual channel and single channel analysis approach was compared for the comparative genomic hybridization experiments. Moreover, the microarray was used to characterize four unsequenced probiotic E. coli strains, currently marketed for beneficial effects on the human gut flora. Results: Based on the genomes included in this study, we were able to group together 2,041 genes that were present in all 32 genomes. Furthermore, we predict that the size of the E. coli core genome will approach ~1,560 essential genes, considerably less than previous estimates. Although any individual E. coli genome contains between 4,000 and 5,000 genes, we identified more than twice as many (11,872) distinct gene groups in the total gene pool (“pan-genome”) examined for microarray design. Benchmarking of the design based on sequenced control strain samples demonstrated a high sensitivity and relatively low false positive rate. Moreover, the array was highly sufficient to investigate the gene content of apathogenic isolates, despite the strong bias towards pathogenic E. coli strains that have been sequenced so far. Our analysis of four probiotic E. coli strains demonstrate that they share a gene pool very similar to the E. coli K-12 strains but also show significant similarity with enteropathogenic strains. Nonetheless, virulence genes were largely absent. Strain-specific genes found in probiotic E. coli but absent in E. coli K12 were most frequently phage-related genes, transposases and other genes related to mobile DNA, and metabolic enzymes or factors that may offer colonization fitness, which together with their asymptomatic nature may explain their nature. Conclusion: This high-density microarray provides an excellent tool for characterizing either DNA content or gene expression from unknown E. coli strains. Keywords: Comparative genomic hybridizations
Project description:The regulatory effects of H3K27me3 on target genes expressions were analyzed by comparing S. aureus mastitis resistant and susceptible cows. The differentially expressed genes are mainly associated with immune and disease-related processes, which were negatively regulated by H3K27me3 modification on the up 2Kb regions relative to TSS in S. aureus mastitis cattle.
Project description:Porcine mammary epithelial cell (PMEC) cultures of three lactating sows were treated with potential mastitis-causing pathogens E. coli and S. aureus in vitro. Subsequently transcriptome profiles were analysed after 3 h and 24 h post-challenge, respectively.