Project description:The objective is to generate a robust and validated predictor profile for chemotherapy response in patients with mCRC using microarray gene expression profiles of primary colorectal cancer tissue. To define a gene signature of response to chemotherapy in metastatic colorectal cancer, samples were obtained from 40 patients from Marques de Valdecilla Hospital who underwent primary surgery. Gene expression was detected and quantified using the Human Whole Genome U133 Plus 2.0 array (Affymetrix), containing 54675 human gene probes. The validation set consisted of 119 samples from Hospital Virgen del Rocio, Seville, Spain; Hospital Virgen de la Victoria, Malaga, Spain; Hospital de la Merced, Osuna, Spain and Hospital MarquM-CM-)s de Valdecilla, Santander, Spain, and included 86 tumor samples (40 coming from the training set and 46 from newly treated CRC patients) and 33 normal tissue samples of CRC patients used as controls. Custom-designed TaqManM-BM-. Low Density Arrays (TLDA) 7900 HT Micro Fluidic Cards including the 161 genes selected for validation were run and analyzed by the ABI PRISMM-BM-. 7900HT Sequence Detection System (SDS 2.2, Applied Biosystems) according to manufacturer's protocol (Applied Biosystems). Expression of target miRNAs was normalized in relation to the expression of GAPDH. Cycle threshold (Ct) values were calculated using the SDS software v.4.2 using automatic baseline settings and a threshold of 0.2. Relative quantification of gene expression was calculated by the 2M-bM-^HM-^RM-NM-^TCt method (Applied Biosystems user bulletin no. 2 (P/N 4303859)). This submission represents the RT-PCR component of the study only
Project description:Co-option of transposable elements (TEs) to become part of existing or new enhancers is an important mechanism for evolution of gene regulation. However, contributions of lineage-specific TE insertions to recent regulatory adaptations remain poorly understood. Gibbons present a suitable model to study these contributions as they have evolved a lineage-specific TE called LAVA (LINE-AluSz-VNTR-AluLIKE), which is still active in the gibbon genome. The LAVA retrotransposon is thought to have played a role in the emergence of the highly rearranged structure of the gibbon genome by disrupting transcription of cell cycle genes. In this study, we investigated whether LAVA may have also contributed to the evolution of gene regulation by adopting enhancer function. We characterized fixed and polymorphic LAVA insertions across multiple gibbons and found 96 LAVA elements overlapping enhancer chromatin states. Moreover, LAVA was enriched in multiple transcription factor binding motifs, was bound by an important transcription factor (PU.1), and was associated with higher levels of gene expression in cis. We found gibbon-specific signatures of purifying/positive selection at 27 LAVA insertions. Two of these insertions were fixed in the gibbon lineage and overlapped with enhancer chromatin states, representing putative co-opted LAVA enhancers. These putative enhancers were located within genes encoding SETD2 and RAD9A, two proteins that facilitate accurate repair of DNA double-strand breaks and prevent chromosomal rearrangement mutations. Co-option of LAVA in these genes may have influenced regulation of processes that preserve genome integrity. Our findings highlight the importance of considering lineage-specific TEs in studying evolution of gene regulatory elements.
Project description:Co-option of transposable elements (TEs) to become part of existing or new enhancers is an important mechanism for evolution of gene regulation. However, contributions of lineage-specific TE insertions to recent regulatory adaptations remain poorly understood. Gibbons present a suitable model to study these contributions as they have evolved a lineage-specific TE called LAVA (LINE-AluSz-VNTR-AluLIKE), which is still active in the gibbon genome. The LAVA retrotransposon is thought to have played a role in the emergence of the highly rearranged structure of the gibbon genome by disrupting transcription of cell cycle genes. In this study, we investigated whether LAVA may have also contributed to the evolution of gene regulation by adopting enhancer function. We characterized fixed and polymorphic LAVA insertions across multiple gibbons and found 96 LAVA elements overlapping enhancer chromatin states. Moreover, LAVA was enriched in multiple transcription factor binding motifs, was bound by an important transcription factor (PU.1), and was associated with higher levels of gene expression in cis. We found gibbon-specific signatures of purifying/positive selection at 27 LAVA insertions. Two of these insertions were fixed in the gibbon lineage and overlapped with enhancer chromatin states, representing putative co-opted LAVA enhancers. These putative enhancers were located within genes encoding SETD2 and RAD9A, two proteins that facilitate accurate repair of DNA double-strand breaks and prevent chromosomal rearrangement mutations. Co-option of LAVA in these genes may have influenced regulation of processes that preserve genome integrity. Our findings highlight the importance of considering lineage-specific TEs in studying evolution of gene regulatory elements.
Project description:Co-option of transposable elements (TEs) to become part of existing or new enhancers is an important mechanism for evolution of gene regulation. However, contributions of lineage-specific TE insertions to recent regulatory adaptations remain poorly understood. Gibbons present a suitable model to study these contributions as they have evolved a lineage-specific TE called LAVA (LINE-AluSz-VNTR-AluLIKE), which is still active in the gibbon genome. The LAVA retrotransposon is thought to have played a role in the emergence of the highly rearranged structure of the gibbon genome by disrupting transcription of cell cycle genes. In this study, we investigated whether LAVA may have also contributed to the evolution of gene regulation by adopting enhancer function. We characterized fixed and polymorphic LAVA insertions across multiple gibbons and found 96 LAVA elements overlapping enhancer chromatin states. Moreover, LAVA was enriched in multiple transcription factor binding motifs, was bound by an important transcription factor (PU.1), and was associated with higher levels of gene expression in cis. We found gibbon-specific signatures of purifying/positive selection at 27 LAVA insertions. Two of these insertions were fixed in the gibbon lineage and overlapped with enhancer chromatin states, representing putative co-opted LAVA enhancers. These putative enhancers were located within genes encoding SETD2 and RAD9A, two proteins that facilitate accurate repair of DNA double-strand breaks and prevent chromosomal rearrangement mutations. Co-option of LAVA in these genes may have influenced regulation of processes that preserve genome integrity. Our findings highlight the importance of considering lineage-specific TEs in studying evolution of gene regulatory elements.
Project description:Co-option of transposable elements (TEs) to become part of existing or new enhancers is an important mechanism for evolution of gene regulation. However, contributions of lineage-specific TE insertions to recent regulatory adaptations remain poorly understood. Gibbons present a suitable model to study these contributions as they have evolved a lineage-specific TE called LAVA (LINE-AluSz-VNTR-AluLIKE), which is still active in the gibbon genome. The LAVA retrotransposon is thought to have played a role in the emergence of the highly rearranged structure of the gibbon genome by disrupting transcription of cell cycle genes. In this study, we investigated whether LAVA may have also contributed to the evolution of gene regulation by adopting enhancer function. We characterized fixed and polymorphic LAVA insertions across multiple gibbons and found 96 LAVA elements overlapping enhancer chromatin states. Moreover, LAVA was enriched in multiple transcription factor binding motifs, was bound by an important transcription factor (PU.1), and was associated with higher levels of gene expression in cis. We found gibbon-specific signatures of purifying/positive selection at 27 LAVA insertions. Two of these insertions were fixed in the gibbon lineage and overlapped with enhancer chromatin states, representing putative co-opted LAVA enhancers. These putative enhancers were located within genes encoding SETD2 and RAD9A, two proteins that facilitate accurate repair of DNA double-strand breaks and prevent chromosomal rearrangement mutations. Co-option of LAVA in these genes may have influenced regulation of processes that preserve genome integrity. Our findings highlight the importance of considering lineage-specific TEs in studying evolution of gene regulatory elements.
Project description:Here we provide proteomic datasets of pairs of cortical and trabecular bone from six Early Holocene Caprinae rib fragments from the site of La Draga, Spain, using shotgun proteomics. Our observations on proteome size and protein, peptide, and amino acid degradation have implications for the sampling of archaeological skeletal remains in highly degraded proteomic contexts, where preference should be given to the sampling of cortical bone in order to maximise the retrieval of larger and better-preserved skeletal proteomes.
Project description:A total of 52 patients were analyzed: 21 of them monoinfected with HCV and 31 coinfected with HIV (HCV/HIV). HCV patients were recruited from Hospital Italiano and Hospital José María Ramos Mejía from Buenos Aires, Argentina, and HCV/HIV patients from Hospital Universitario La Paz, Hospital Infanta Leonor, Hospital Universitario La Princesa, Hospital Puerta de Hierro, from Madrid, Spain. All samples were processed at the National Center for Microbiology (Madrid). Patients were naıve of treatment for HCV. CHC infection was defined by the presence of anti-HCV antibodies in serum and detectable HCV RNA in plasma samples in at least 2 separate occasions. All HIV+ patients had HIV antibodies, CD4+ T-cells counts ≥ 500 cel/mm3 for at least one year before sample collection, and undetectable HIV viral load since they received suppressive antiretroviral treatment (ART) for at least one year. Plasma extracellular vesicles isolation and RNA purification was performed using the ExoRNeasy Serum/Plasma Midi kit (QIAGEN, Cat #77044). EVs were phenol-lysed and total RNA was purified by ethanol-based membrane binding into spin columns. Quality and integrity were evaluated by the Bioanalyzer 2100 with Agilent RNA 6000 Nano kit (Agilent). Small RNA library synthesis and sequencing were performed at Centre for Genomic Regulation (CRG) at Barcelona (Spain). Small RNA libraries were constructed with Illumina’s TruSeq Small RNA kit v.4 (Illumina) and 50nts (1x50) were sequenced in an Illumina HiSeq2500, with a single read approach.
Project description:The first step in biomarkers discovery is to identify the best protocols for their purification and analysis. We have identified an optimal RNA extraction method of microRNAs from human plasma samples. We also report that the addition of low doses of carrier RNA before starting RNA extraction improves microRNA extraction and quantification. Human plasma and matched biopsies were obtained from healthy donors and patients attended at the Hospital Universitari i Politècnic La Fe (Valencia, Spain). RNA was extracted by different preanalytal conditions and reagents, testing the suitable of carrier addition at differnt doses. The best protocol was followed up by hybridation on Affymetrix microarrays.