Project description:Aflatoxins are toxic and carcinogenic polyketide metabolites produced by fungal species, including Aspergillus flavus and A. parasiticus. The biosynthesis of aflatoxins is modulated by many environmental factors, including the availability of a carbon source. The gene expression profile of A. parasiticus was evaluated during a shift from a medium with low concentration of simple sugars, Yeast Extract (YE), to a similar medium with sucrose, Yeast Extract Sucrose (YES). Total RNA and aflatoxins (B1, B2, G1, and G2) were quantified from fungal mycelia harvested pre- and post-shifting. When compared to YE media, YES caused temporary reduction of the aflatoxin levels detected at 3 hours post-shifting and they remained low well past 12 hours post-shift. Aflatoxin levels did not exceed the levels in YE until 24 hrs post shift, at which time point a 10-fold increase was observed over YE. Microarray analysis comparing the RNA samples from the 48 hr YE culture to the YES samples identified a total of 2120 genes that were expressed across all experiments, including most of the aflatoxin biosynthesis genes. One-way Analysis of Variance (ANOVA) identified 56 genes that were expressed with significant variation across all time points. Three genes responsible for converting norsolorinic acid to averantin were identified among these significantly expressed genes. The potential role of these genes involvement in the regulation of aflatoxin biosynthesis is discussed. Keywords: time course, media shift, Aspergillus, aflatoxin
Project description:Aflatoxins are toxic and carcinogenic secondary metabolites produced by the fungi Aspergillus flavus and A. parasiticus. In order to better understand the molecular mechanisms that regulate aflatoxin production, the biosynthesis of the toxin in A. flavus and A. parasticus grown in yeast extract sucrose media supplemented with 50 mM tryptophan (Trp) were examined. A. flavus grown in the presence of 50 mM tryptophan was found to have significantly reduced aflatoxin B1 and B2 biosynthesis, while A. parasiticus cultures had significantly increased B1 and G1 biosynthesis. Microarray analysis of RNA extracted from fungi grown under these conditions revealed seventy seven genes that are expressed significantly different between A. flavus and A. parasiticus, including the aflatoxin biosynthetic genes aflD (nor-1), aflE (norA), and aflO (omtB). It is clear that the regulatory mechanisms of aflatoxin biosynthesis in response to Trp in A. flavus and A. parasiticus are different. These candidate genes may serve as regulatory factors of aflatoxin biosynthesis. Keywords: Aflatoxin, Aspergillus, flavus, Amnio Acids, Tryptophan
Project description:Aspergillus flavus and A. parasiticus are two of the most important aflatoxin-producing species that contaminate agricultural commodities worldwide. Both species are heterothallic and undergo sexual reproduction in laboratory crosses. Here, we examine the possibility of interspecific matings between A. flavus and A. parasiticus. These species can be distinguished morphologically and genetically, as well as by their mycotoxin profiles. Aspergillus flavus produces both B aflatoxins and cyclopiazonic acid (CPA), B aflatoxins or CPA alone, or neither mycotoxin; Aspergillus parasiticus produces B and G aflatoxins or the aflatoxin precursor O-methylsterigmatocystin, but not CPA. Only four out of forty-five attempted interspecific crosses between compatible mating types of A. flavus and A. parasiticus were fertile and produced viable ascospores. Single ascospore strains from each cross were isolated and were shown to be recombinant hybrids using multilocus genotyping and array comparative genome hybridization. Conidia of parents and their hybrid progeny were haploid and predominantly monokaryons and dikaryons based on flow cytometry. Multilocus phylogenetic inference showed that experimental hybrid progeny were grouped with naturally occurring A. flavus L strain and A. parasiticus. Higher total aflatoxin concentrations in some F1 progeny strains compared to midpoint parent aflatoxin levels indicate synergism in aflatoxin production; moreover, three progeny strains synthesized G aflatoxins that were not produced by the parents, and there was evidence of putative allopolyploidization in one strain. These results suggest that hybridization is an important diversifying force resulting in the genesis of novel toxin profiles in these agriculturally important species.
Project description:Aflatoxins are carcinogenic secondary metabolites produced by the fungi Aspergillus flavus and Aspergillus parasiticus. Repeated serial mycelial transfer or treatment of A. parasiticus with 5-azacytidine produced mutants with a fluffy phenotype and loss of aflatoxin production. To understand how these treatments affect aflatoxin production and development, we carried out expressed sequence tag (EST)-based microarray assays to identify differentially expressed genes in clones obtained from these treatments. Expression of 183 genes was significantly dysregulated. Of these, 38 had at least two-fold or lower expression compared to the untreated control and only two had two-fold or higher expression. The most frequent change was downregulation of genes predicted to be membrane-bound. Dysregulation of some of these may be responsible for the fluffy phenotype. Of the aflatoxin biosynthesis pathway genes only aflJ (aflS) was significantly affected by either treatment. A gene for a protein homologous to a key regulator of secondary metabolite biosynthesis (LaeA) was one of the upregulated genes and possibly could affect the activity of LaeA. Other genes known to be required for fungal developmental or aflatoxin production were not affected by the treatments. Consistent with the fluffy phenotype and the non-aflatoxigenicity of the clones obtained by either treatment, we hypothesize that the mutations cause improper development of conidiophores and specialized biosynthesis vacuoles (aflatoxisomes) needed for AF production. A. parasiticus wild-type (WT) and clones from serial mycelial transfer (SerTrans), and 5-azacytidine-treated (5-AC) fungi were grown for 16 and 24 h on PDA medium. RNA was isolated from the mycelia at each time point and cDNAs were labeled with Cy3 or Cy5 dyes prior to microarray assay.
Project description:Aflatoxins are carcinogenic secondary metabolites produced by the fungi Aspergillus flavus and Aspergillus parasiticus. Repeated serial mycelial transfer or treatment of A. parasiticus with 5-azacytidine produced mutants with a fluffy phenotype and loss of aflatoxin production. To understand how these treatments affect aflatoxin production and development, we carried out expressed sequence tag (EST)-based microarray assays to identify differentially expressed genes in clones obtained from these treatments. Expression of 183 genes was significantly dysregulated. Of these, 38 had at least two-fold or lower expression compared to the untreated control and only two had two-fold or higher expression. The most frequent change was downregulation of genes predicted to be membrane-bound. Dysregulation of some of these may be responsible for the fluffy phenotype. Of the aflatoxin biosynthesis pathway genes only aflJ (aflS) was significantly affected by either treatment. A gene for a protein homologous to a key regulator of secondary metabolite biosynthesis (LaeA) was one of the upregulated genes and possibly could affect the activity of LaeA. Other genes known to be required for fungal developmental or aflatoxin production were not affected by the treatments. Consistent with the fluffy phenotype and the non-aflatoxigenicity of the clones obtained by either treatment, we hypothesize that the mutations cause improper development of conidiophores and specialized biosynthesis vacuoles (aflatoxisomes) needed for AF production.
Project description:Gene expression analysis of A. parasiticus grown under conditions conducive and nonconductive for aflatoxin production was evaluated using glass slide microarrays containing the 753 ESTs. A complex regulatory network governs the biosynthesis of aflatoxin. While several genes involved in aflatoxin production are known, their action alone cannot account for its regulation. Arrays of clones from an Aspergillus flavus cDNA library and glass slide microarrays of ESTs were screened to identify additional genes. An initial screen of the cDNA clone arrays lead to the identification of 753 unique ESTs. Many showed sequence similarity to known metabolic and regulatory genes; however, no function could be ascribed to over 50% of the ESTs. Gene expression analysis of Aspergillus parasiticus grown under conditions conducive and non-conductive for aflatoxin production was evaluated using glass slide microarrays containing the 753 ESTs. Twenty-four genes were more highly expressed during aflatoxin biosynthesis and 18 genes were more highly expressed prior to aflatoxin biosynthesis. No predicted function could be ascribed to 18 of the 24 genes whose elevated expression was associated with aflatoxin biosynthesis. Keywords = Aspergillus Keywords = aflatoxin Keywords: time-course
Project description:Gene expression analysis of A. parasiticus grown under conditions conducive and nonconductive for aflatoxin production was evaluated using glass slide microarrays containing the 753 ESTs. A complex regulatory network governs the biosynthesis of aflatoxin. While several genes involved in aflatoxin production are known, their action alone cannot account for its regulation. Arrays of clones from an Aspergillus flavus cDNA library and glass slide microarrays of ESTs were screened to identify additional genes. An initial screen of the cDNA clone arrays lead to the identification of 753 unique ESTs. Many showed sequence similarity to known metabolic and regulatory genes; however, no function could be ascribed to over 50% of the ESTs. Gene expression analysis of Aspergillus parasiticus grown under conditions conducive and non-conductive for aflatoxin production was evaluated using glass slide microarrays containing the 753 ESTs. Twenty-four genes were more highly expressed during aflatoxin biosynthesis and 18 genes were more highly expressed prior to aflatoxin biosynthesis. No predicted function could be ascribed to 18 of the 24 genes whose elevated expression was associated with aflatoxin biosynthesis. Keywords = Aspergillus Keywords = aflatoxin Keywords: time-course
Project description:Gene expression analysis of A. parasiticus grown under conditions conducive and nonconductive for aflatoxin production was evaluated using glass slide microarrays containing 765 ESTs. Aflatoxins (AF) produced by Aspergillus flavus and A. parasiticus are responsible for approximately $270M in losses annually in the corn, peanut, cotton, and tree nut industries of the United States. In an attempt to develop effective control procedures, research has focused on elucidating the pathway of aflatoxin biosynthesis with the goal of identifying potential targets for intervention. Research to date points to the involvement of complex and likely overlapping regulatory circuits. To better understand the regulation by nutritional and environmental factors, a targeted cDNA microarray consisting of genes associated with AF production was employed to investigate the influence of nitrogen source, carbon source, temperature, and pH on AF production. For each nutritional or environmental parameter examined, a condition conducive for aflatoxin production was compared with a condition that was non-conducive. Three replicate cultures for each condition were grown. Cultures were grown for 24 hours and harvested. AF production for each culture was quantified and tissues were stored separately at -80C. For array hybridization, tissue samples for each condition were pooled and RNA extracted using Trizol reagent. Keywords = aspergillus Keywords = aflatoxin Keywords = regulation Keywords = secondary metabolism