Project description:We report the discovery of six novel miRNAs expressed by Herpesvirus saimiri (strain A11). These miRNAs are generated by a non-canonical biogenesis pathway that does not require the Microprocessor complex. Examination of one sample prepared from common marmoset (Callithrix jacchus) T cells latently infected with Hespesvirus saimiri (strain A11).
Project description:In primates, high-acuity vision is mediated by the fovea, a small specialized central region of the retina. The fovea, unique to the anthropoid lineage among mammals, undergoes notable neuronal morphological changes during postnatal maturation. However, the degree of cellular similarity across anthropoid foveas and the molecular underpinnings of foveal maturation remain unclear. Here, we used high throughput single cell RNA sequencing (scRNA-seq) to profile retinal cells of the common marmoset (Callithrix jacchus), an early divergent in anthropoid evolution from humans, apes, and macaques. We generated atlases of the marmoset fovea and peripheral retina for both neonates and adults.
Project description:Epstein-Barr virus (EBV)-based episomal vector system enables persistent transgene expression, which is advantageous for efficient derivation of transgene-free induced pluripotent stem cells (iPSCs) without viral transduction. Here, we report establishment of an iPSC line from somatic fibroblasts of a neonatal common marmoset monkey (marmoset; Callithrix jacchus) using an all-in-one episomal vector that we newly developed. The established iPSC line, named NM-iPS, showed standard characteristics of pluripotency such as pluripotency-related marker expression, three germ layer differentiation, and normal karyotype (2n = 46). The novel iPSC line would be a useful resource for stem cell research using non-human primates.
Project description:Extended pluripotent stem cells (EPSCs) derived from mice and humans showed an enhanced potential for chimeric formation. By exploiting transcriptomic techniques, we assessed the differences in gene expression profile between extended EPSCs derived from mice and humans, and those newly derived from the common marmoset (marmoset; Callithrix jacchus). Although the marmoset EPSC-like cells displayed a unique colony morphology distinct from murine and human EPSCs, they displayed a pluripotent state akin to embryonic stem cells (ESCs), as confirmed by gene expression and immunocytochemical analyses of pluripotency markers and three-germ-layer differentiation assay. Importantly, the marmoset EPSC-like cells showed interspecies chimeric contribution to mouse embryos, such as E6.5 blastocysts in vitro and E8.5 epiblasts in vivo in mouse development. Also, we discovered that the perturbation of gene expression of the marmoset EPSC-like cells from the original ESCs resembled that of human EPSCs. Thus, we established the efficacy of the method for the derivation of marmoset EPSCs
Project description:Small RNAs mediate gene silencing by binding Argonaute/Piwi proteins to regulate target RNAs. Here we describe small RNA profiling of the adult testes of Callithrix jacchus, the common marmoset. The most abundant class of small RNAs in the adult testis was piRNAs, while 353 novel miRNAs but few endo-siRNAs were also identified. MARWI, a marmoset homolog of mouse MIWI and a very abundant PIWI in adult testes, associates with piRNAs that show characteristics of mouse pachytene piRNAs. As in other mammals, most marmoset piRNAs are derived from conserved clustered regions in the genome, which are annotated as intergenic regions. However, some of these piRNA cluster regions contain antisense-orientated pseudogenes, suggesting regulation of parental functional protein-coding genes. More piRNAs map to transposable element (TE) subfamilies when they have copies in piRNA clusters. In addition, the strand-bias observed for piRNAs mapped to each TE subfamily correlates with the polarity of copies inserted in clusters. These findings suggest that pachytene piRNA clusters determine the abundance and strand-bias of TE-derived piRNAs, and also regulate protein-coding genes via pseudogene-derived piRNAs. small RNA levels in the adult marmoset testis, and MARWI-IP small RNA levels and RNA levels from the adult marmoset testis with two replicates.