Project description:Aldehyde dehydrogenase isozymes ALDH1A1 and ALDH3A1 are highly expressed in non small cell cell lung cancer. Neither the mechanism nor the biological significance for such over expression have been studied. We used microarrays to analyze changes in A549 lung cancer cell line in which ALDH activity was reduced using lentiviral mediated expression of siRNA against both isozymes (Lenti 1+3) Keywords: Gene Profiling after ALDH Knock Down
Project description:Aldehyde dehydrogenase isozymes ALDH1A1 and ALDH3A1 are highly expressed in non small cell cell lung cancer. Neither the mechanism nor the biological significance for such over expression have been studied. We used microarrays to analyze changes in A549 lung cancer cell line in which ALDH activity was reduced using lentiviral mediated expression of siRNA against both isozymes (Lenti 1+3) Experiment Overall Design: A549 lung cancer cell lines were transduced with lentiviral vectors containing specific siRNA sequences against ALDH1A1, ALDH3A1, both vectors (Lenti 1+3 cells), and against the green flourescent protein (GFP) gene (GFP cells, used as control).
Project description:Spheroids are 3D multi-cell aggregates formed in non-addherent culture conditions. In ovarian cancer (OC), they serve as a vehicle for cancer cell dissemination in the peritoneal cavity. We investigated genes and networks upregulated in three dimensional (3D) versus two-dimensional (2D) culture conditions by Affymetrix gene expression profiling and identified ALDH1A1, a cancer stem cell marker as being upregulated in OC spheroids. Network analysis confirmed ALDH1A1 upregulation in spheroids in direct connection with elements of the beta-catenin pathway. A parallel increase in the expression levels of beta-catenin and ALDH1A1 was demonstrated in spheroids vs. monolayers an in successive spheroid generations by using OC cell liness and primary OC cells. The percentage of Aldefluor positive cells was significantly higher in spheroids vs. monolayers in IGROV1, A2780, SKOV3, and primary OC cells. B-catenin knock-down decreased ALDH1A1 expression and chromatin immunoprecipitation demonstrated that beta-catenin directly binds to the ALDH1A1 promoter. Both siRNA mediated beta-catenin knock-down and a novel ALDH1A1 small molecule enzymatic inhibitor described here for the first time, decreased the number of OC spheroids (p<0.001) and cell viability. These data strongly support the role of beta-catenin regulated ALDH1A1 in the maintenance of OC spheroids and of a stem cell phenotype and propose new ALDH1A1 inhibitors targeting this cell population. Different gene profiles were observed in ovarian cancer spheroids versus ovarian cancer monolayers. Nine samples were analyzed in triplicate. Each group is a reference.
Project description:scRNAseq data of scrambled and siRNA-mediated knock-down (96h) of the minor spliceosome snRNA U6atac in androgen-sensitive LNCaP cells and in patient derived neuroendocrine organoids (PM154). Three replicates for each cell line.
Project description:Spheroids are 3D multi-cell aggregates formed in non-addherent culture conditions. In ovarian cancer (OC), they serve as a vehicle for cancer cell dissemination in the peritoneal cavity. We investigated genes and networks upregulated in three dimensional (3D) versus two-dimensional (2D) culture conditions by Affymetrix gene expression profiling and identified ALDH1A1, a cancer stem cell marker as being upregulated in OC spheroids. Network analysis confirmed ALDH1A1 upregulation in spheroids in direct connection with elements of the β-catenin pathway. A parallel increase in the expression levels of β-catenin and ALDH1A1 was demonstrated in spheroids vs. monolayers an in successive spheroid generations by using OC cell liness and primary OC cells. The percentage of Aldefluor positive cells was significantly higher in spheroids vs. monolayers in IGROV1, A2780, SKOV3, and primary OC cells. B-catenin knock-down decreased ALDH1A1 expression and chromatin immunoprecipitation demonstrated that β-catenin directly binds to the ALDH1A1 promoter. Both siRNA mediated β-catenin knock-down and a novel ALDH1A1 small molecule enzymatic inhibitor described here for the first time, decreased the number of OC spheroids (p<0.001) and cell viability. These data strongly support the role of β-catenin regulated ALDH1A1 in the maintenance of OC spheroids and of a stem cell phenotype and propose new ALDH1A1 inhibitors targeting this cell population.
Project description:We sought to determine the effects of SMARCA4 and SMARCA2 depletion in prostate cancer cell lines. We performed siRNA-mediated knock-down of SMARCA4 and SMARCA2 in an androgen-sensitive (LNCaP) cell line and in a castration-resistant prostate cancer (CRPC)-adenocarcinoma cell line (22Rv1) and compared global transcriptional alterations using RNA-seq.
Project description:Background: Lung cancer is the leading cause of cancer related death worldwide. Over the past 15 years no major improvement of survival rates could be accomplished. The recently discovered histone methyltransferase KMT9 as epigenetic regulator of prostate tumor growth has now raised hopes of enabling new cancer therapies. In this study we aimed to identify the function of KMT9 in lung cancer which has remained elusive so far. Methods: We linked full transcriptome and proteome analyses of A549 lung adenocarcinoma cells using RNA-Seq and mass spectrometry with functional cell culture, real-time proliferation and flow cytometry assays. Results: KMT9 is expressed in lung cancer tissue and cell lineswith high levels of KMT9 correlating with poor patient survival. We identified 460 overlapping genes and proteins that are deregulated upon knock-down of KMT9alpha in A549 cells. These genes cluster with proliferation, cell cycle and cell death gene sets as well as with subcellular organelles in gene ontology analysis. Knock-down of KMT9alpha inhibits lung cancer cell proliferation and induces non-apoptotic cell death in A549 cells. Conclusions: The novel histone methyltransferase KMT9 is crucial for proliferation and survival of lung cancer cells harboring various mutations. Small molecule inhibitors targeting KMT9 therefore should be further examined as potential milestones in modern epigenetic lung cancer therapy.
Project description:We profiled transcriptomes in human lung cancer cell line A549 when the expression of Bloom was knockdown by the siRNA specific to Bloom.
Project description:By survival analysis of breast cancer patients, JMJD6 was found to be significantly associated with poor prognosis. Over-expression and knock-down of JMJD6 in breast cancer cell lines suggested a role in proliferation. In order to study the transcriptional events that occur following JMJD6 expression changes, siRNA-mediated knock-down of JMJD6 was performed in MCF-7 and MDA-MB231 and stable over-expression of JMJD6 was performed in MCF-7. There are 2 different siRNA-mediated knock-downs of JMJD6 with 2 biological replicates in MCF-7 and MDA-MB231; 3 clones of JMJD6 over-expression with 3 biological replicates in MCF-7. The control for the knock-downs is scrambled siRNA-treated MCF-7 and MDA-MB231 and the control for JMJD6 over-expression is empty vector over-expression in MCF-7.