Project description:Biomanufacturing remains financially uncompetitive with the lower cost but higher carbon emitting hydrocarbon based chemical industry. Novel chassis organisms may enable cost reductions with respect to traditional chassis such as E. coli and so open an economic rout to low emission biomanufacturing. Extremophile bacteria exemplify that potential. Salt tolerant halomonas species thrive in conditions inimical to other organisms. Their adoption would eliminate the cost of sterilising equipment. Novel chassis are inevitably poorly understood in comparison to established organisms. Rapid characterisation and community data sharing will facilitate organisms’ adoption for biomanufacturing. This paper describes baseline proteomics data set for Halomonas bluephagenesis TD01 under active development for biomanufactoring. The data record comprises a newly sequenced genome for the organism; evidence for expression of 1150 proteins (30% of the proteome) including baseline quantification of 1050 proteins (27% of the proteome) and a spectral library enabling re-use for targeted proteomics assays. Protein data is annotated with KEGG Orthology enabling rapid matching of quantitative data to pathways of interest to biomanufacturing.
Project description:3-Hydroxypropionic acid (3HP), an important three carbon (C3) chemical, is designated as one of the top platform chemicals with an urgent need for improved industrial production. Halomonas bluephagenesis shows the potential as a chassis for competitive bioproduction of various chemicals due to its ability to grow under an open, unsterile and continuous process. Here, we report the strategy for producing 3HP and its copolymer poly(3-hydroxybutyrate-co-3-hydroxypropionate) (P3HB3HP) by the development of H. bluephagenesis. The transcriptome analysis reveals its 3HP degradation and synthesis pathways involving endogenous synthetic enzymes from 1,3-propanediol. Combing the optimized expression of aldehyde dehydrogenase (AldDHb), an engineered H. bluephagenesis strain of whose 3HP degradation pathway is deleted and that overexpresses alcohol dehydrogenases (AdhP) on its genome under a balanced redox state, is constructed with an enhanced 1.3-propanediol-dependent 3HP biosynthetic pathway to produce 154 g L-1 of 3HP with a yield and productivity of 0.93 g g-1 1,3-propanediol and 2.4 g L-1 h-1, respectively. Moreover, the strain could also accumulate 60% poly(3-hydroxybutyrate-co-32-45% 3-hydroxypropionate) in the dry cell mass, demonstrating to be a suitable chassis for hyperproduction of 3HP and P3HB3HP.