Project description:Silencing of the adaptor SH3BP2 impairs Gastrointestinal stromal tumors growth through miRNAs We dissected SH3BP2 pathway in Gastrointestinal Stromal Tumor cells (GIST) performing a miRNA array in SH3BP2-silenced GIST cells
Project description:Purpose: Management of gastrointestinal stromal tumor (GIST) has been revolutionized by the identification of activating mutations in KIT and PDGFRA and the clinical application of receptor tyrosine kinase (RTK) inhibitors in the advanced disease setting. Stratification of GIST into molecularly defined subsets provides insight into clinical behavior and response to approved targeted therapies. Although these RTK inhibitors are effective in the majority of GIST, resistance to these agents remains a significant clinical obstacle. Development of effective treatment strategies for refractory GIST requires identification of novel targets to provide additional therapeutic options. Global kinome profiling has the potential to identify critical signaling networks and reveal protein kinases that are essential in GIST. Experimental Design: Using Multiplexed Inhibitor Beads and Mass Spectrometry paired with a super-SILAC kinome standard, we explored the majority of the kinome in GIST specimens from three GIST subtypes (KIT-mutant, PDGFRA-mutant and succinate dehydrogenase-deficient GIST) to identify novel kinase targets. In vitro and in vivo studies were performed to evaluate the utility of targeting the identified kinases in GIST. Results: Kinome profiling revealed distinct signatures in three GIST subtypes. PDGFRA-mutant GIST had elevated tumor associated macrophage (TAM) kinases and immunohistochemical analysis confirmed increased TAMs present in these tumors. Kinome profiling with loss-of-function assays revealed a significant role for G2-M tyrosine kinase, Wee1, in GIST survival. In vitro and in vivo studies revealed significant efficacy of MK-1775 (Wee1 inhibitor) in combination with avapritinib in both KIT and PDGFRA-mutant GIST cell lines, as well as notable efficacy of MK-1775 as a single agent in the PDGFRA-mutant line. Conclusions: These studies provide strong preclinical justification for the use of MK-1775 in GIST.
Project description:Gastrointestinal stromal tumors (GIST) are phenotypically and clinically heterogeneous mesenchymal tumors. Using the cDNA array technique, we analyzed the gene expression profiles of 22 GIST and 7 non-neoplastic gastrointestinal smooth muscle specimens, in order to detect molecular differences between GIST and non-neoplastic tissue, and to detect differences between GIST of various phenotypic and clinical subgroups. As a result, we found 796 differentially expressed genes and ESTs between GIST and smooth muscle tissue, including promising new candidate genes for the pathogenesis of GIST. Furthermore, we identified differences in gene expression between GIST of different site, size, and immunohistochemical expression of CD34 and SMA. Our data show that alterations in gene expression are associated with morphologically and clinically detectable features of GIST and provide new aspects for the understanding of these tumors. Keywords = Gastrointestinal Stromal Tumor (GIST)
Project description:Gastrointestinal stromal tumors (GIST) are phenotypically and clinically heterogeneous mesenchymal tumors. Using the cDNA array technique, we analyzed the gene expression profiles of 22 GIST and 7 non-neoplastic gastrointestinal smooth muscle specimens, in order to detect molecular differences between GIST and non-neoplastic tissue, and to detect differences between GIST of various phenotypic and clinical subgroups. As a result, we found 796 differentially expressed genes and ESTs between GIST and smooth muscle tissue, including promising new candidate genes for the pathogenesis of GIST. Furthermore, we identified differences in gene expression between GIST of different site, size, and immunohistochemical expression of CD34 and SMA. Our data show that alterations in gene expression are associated with morphologically and clinically detectable features of GIST and provide new aspects for the understanding of these tumors. Keywords = Gastrointestinal Stromal Tumor (GIST) Keywords: other
Project description:GIST (gastrointestinal stromal tumor) is the most prominent mesenchymal neoplasms of the gastrointestinal tract, and liver is the most common metastasis site for GIST. The molecular mechanism leading to liver metastasis of GIST is currently unclear. With the goal of revealing the underlying mechanism, we performed whole-genome gene expression profiling in 18 pairs of RNA samples comprised of liver metastasis tissues and corresponding non-tumor tissues. To reveal the underlying mechanism leading to liver metastasis of GIST
Project description:This SuperSeries is composed of the following subset Series: GSE19396: ETV1 knockdown in GIST cell lines GSE22433: Imatinib Treatment of GIST882 GSE22441: Mapping of ETV1 genomic binding sites in gastrointestinal stromal tumor (GIST). Refer to individual Series