Project description:Estrogen Receptor is a key transcriptional regulator in mammary gland development and breast cancer. In this study, we have mapped the Estrogen Receptor chromatin binding patterns in healthy mouse mammary gland A minimum of 6 pairs of mouse mammary gland pads from mice at 5-6 weeks of age were excised and Estrogen Receptor ChIp-seq was performed.
Project description:Cross-species hybridization analysis of mammary glands during pregnancy and lactation. Results provide insight into putative conserved molecular mechanisms regulating mammary gland development. This study was performed to identify orthologous transcripts that are differentially co-expressed in the mammary gland at 2 stages of development (pregnancy and lactation) in wild type Sprague-Dawley rats. Key points are examined in a time series of Sprague Dawley rat mammary gland development, secretory activation and lactation. Triplicate rat (three biological replicates) at each time point were used for statistical power totalling 12 individual arrays in this study. Rats were as staged pregnant day 1 the day that post coital plug was observed, and similarly, lactation day 1 was the first day after birth. Whole mammary glands No. 4 (inguinal) were obtained from female rats at stages of development: virgin (adulthood, 14 wks of age), Pregnant (5 and 14 days of pregnancy) and Lactating (day 1 and 12 postpartum). The two-color (Cy5/Cy3) microarray experiment was designed to hybridize samples from each group against a common reference, a pool of RNA from mammary gland of three parous or virgin female rats.
Project description:Introgressed variants from other species can be an important source of genetic variation because they may arise rapidly, can include multiple mutations on a single haplotype, and have often been pretested by selection in the species of origin. Although introgressed alleles are generally deleterious, several studies have reported introgression as the source of adaptive alleles-including the rodenticide-resistant variant of Vkorc1 that introgressed from Mus spretus into European populations of Mus musculus domesticus. Here, we conducted bidirectional genome scans to characterize introgressed regions into one wild population of M. spretus from Spain and three wild populations of M. m. domesticus from France, Germany, and Iran. Despite the fact that these species show considerable intrinsic postzygotic reproductive isolation, introgression was observed in all individuals, including in the M. musculus reference genome (GRCm38). Mus spretus individuals had a greater proportion of introgression compared with M. m. domesticus, and within M. m. domesticus, the proportion of introgression decreased with geographic distance from the area of sympatry. Introgression was observed on all autosomes for both species, but not on the X-chromosome in M. m. domesticus, consistent with known X-linked hybrid sterility and inviability genes that have been mapped to the M. spretus X-chromosome. Tract lengths were generally short with a few outliers of up to 2.7 Mb. Interestingly, the longest introgressed tracts were in olfactory receptor regions, and introgressed tracts were significantly enriched for olfactory receptor genes in both species, suggesting that introgression may be a source of functional novelty even between species with high barriers to gene flow.
Project description:Estrogen Receptor is a key transcriptional regulator in mammary gland development and breast cancer. In this study, we have mapped the Estrogen Receptor chromatin binding patterns in healthy mouse mammary gland
Project description:In this study, two small RNA libraries were constructed using dry period and peak lactation dairy goat mammary gland tissues and sequenced by the Illumina Solexa high-throughput sequencing system. A total of 346 conserved and 95 novel miRNAs were identified in the dairy goat. The expression of miRNAs was confirmed by qRT-PCR in nine tissues and the mammary gland during development cycles. In addition, several candidate miRNAs that may be involved in mammary gland development and lactation were found by the comparison of miRNA expression profiles among different tissue and developmental stages of the mammary gland. This study provides the identification and profile of miRNAs related to the biology of the mammary gland in the dairy goat. The identification of these miRNAs could contribute to understanding the molecular mechanisms of lactation physiology and the development of the mammary gland in the dairy goat.