Project description:RON WT and RON KO at 5, 6, 7 week virgin mammary glands In the study, we demonstrated that RON regulates mammary gland branching morphogenesis in pubertal development associated with changes in gene expression. Keywords: Pubertal mammary glands In the study, we hybridized RNA from 5, 6, 7 week old virgin female RON WT and KO mammary glands to Affymetrix GeneChip Mouse Genome 430 2.0 Array
Project description:RON WT and RON KO at 5, 6, 7 week virgin mammary glands In the study, we demonstrated that RON regulates mammary gland branching morphogenesis in pubertal development associated with changes in gene expression. Keywords: Pubertal mammary glands
Project description:MicroRNAs (miRNAs) are small noncoding RNAs that participate in regulation of gene expression. Their role during mammary gland development is still largely unknown. In the present study, we performed a microarray analysis to identify miRNAs associated with high mammogenic potential of bovine mammary gland. We identified 54 miRNAs differing significantly between mammary tissue of dairy (Holstein-Friesian, HF) and beef (Limousine, LM) post-pubertal heifers. Fifty two miRNAs had higher expression in the mammary tissue of LM heifers. Enrichment analyses for targeted genes revealed that the major differences between miRNA expression in the mammary gland of HF vs. LM were associated with regulation of signalling pathways crucial for mammary gland development, such as: TGF-beta, insulin, WNT and inflammatory pathways. Moreover, a number of genes potentially targeted by differentially expressed miRNAs was associated with mammary stem cells’ activity. These data indicate that in dairy cattle high developmental potential of the mammary gland, leading to high milk productivity, not only depends on central neuro-endocrine regulation but also on specific miRNA expression pattern.
Project description:The aim was to carry out global analysis of gene expression changes occurring in the normal pubertal mouse mammary gland from the appearance to the regression of terminal end buds. Keywords: developmental time course
Project description:MicroRNAs are widely expressed in the normal pubertal mammary gland and orchestrate mammary gland development by regulating cell proliferation, differentiation, apoptosis, and metabolism. Although human Growth hormone(hGH) plays fundamental roles in normal mammary gland development and elevated autocrine hGH levels have been documented to contribute to breast cancer, whether hGH should influence the expression pattern and the functional roles of miRNAs in this context remain unknown.This study explores the effects of autocrine hGH on microRNA expression in MCF7 cell.