Project description:Myanmar locates in the crossroads of South Asia, Southeast Asia, and East Asia, and is known for high culture diversity in different ethnic groups. It is considered to be important for understanding human evolutionary history and genetic diversity in East Eurasia. However, relatively few studies have examined the population structure and demographic history in Myanmar to date. In this study, we analyzed more than 220,000 genome-wide SNPs in 175 new samples of five ethnic groups from Myanmar and compared them with the published data. Our results showed that the Myanmar population is intricately substructured, with the main observed clusters corresponding roughly to western/northern highlanders (Chin, Naga, and Jingpo) and central/southern lowlanders (Bamar and Rakhine). The gene flow inferred from South Asia has a substantial influence (~11%) on the gene pool of central/southern lowlanders rather than western/northern highlanders. The genetic admixture is dated around 650 years ago. These findings suggest that the genome-wide variation in Myanmar was likely shaped by the linguistic, cultural, and historical changes.
Project description:We show here by using genome-wide ChIP-sequencing that lineage segregation involves multiple Sox/Oct partnership. In undifferentiated ES cells Oct4 interacts with Sox2 and both TFs bind on the 'canonical' motif, whereas in cells commited to PrE lineage Oct4 switches from Sox2 to Sox17 interaction and this complex bind to a unique "compressed" motif. ChIP-sequencing has been done for Sox2, Sox17 and Oct4 in the pluripotent context or PrE context
Project description:The wide application of pig disease model has caused a surge of interest in the study of derivation of pig induced pluripotent cells (iPSCs). Here we performed genome-wide analysis of gene expression profiling by RNA-seq and small RNA-seq and DNA methylation profile by MeDIP-seq in pig iPSCs through comparison with somatic cells. We identified mRNA and microRNA transcripts that were specifically expressed in pig iPSCs. We then pursued comprehensive bioinformatics analyses, including functional annotation of the generated data within the context of biological pathways, to uncover novel biological functions associated with maintenance of pluripotency in pig. This result supports that pig iPS have transcript profiles linked to ribosome, chromatin remodeling, and genes involved in cell cycle that may be critical to maintain their pluripotency, plasticity, and stem cell function. Our analysis demonstrates the key role of RNA splicing in regulating the pluripotency phenotype of pig cells. Specifically, the data indicate distinctive expression patterns for SALL4 spliced variants in different pig cell types and highlight the necessity of defining the type of SALL4 when addressing the expression of this gene in pig cells. MeDIP-seq data revealed that the distribution patterns of methylation signals in pig iPS and somatic cells along the genome. We identify 25 novel porcine miRNA, including pluripotency-related miR-302/367cluster up-regulated in pig iPSCs. At last, we profile the dynamic gene expression signature of pluripotent genes in the preimplantation development embryo of pig. The resulting comprehensive data allowed us to compare various different subsets of pig pluripotent cell. This information provided by our analysis will ultimately advance the efforts at generating stable naive pluripotency in pig cells.
Project description:Background. The Beijing family of Mycobacterium tuberculosis is dominant in countries in East Asia. Genomic polymorphisms are a source of diversity within the M.tuberculosis genome and may account for the variation of virulence among M.tuberculosis isolates. To date there are no studies that have examined the genomic composition of M.tuberculosis isolates from the high TB-burden country, Myanmar. Methodology/Principle findings. Twenty-two M.tuberculosis isolates from Myanmar were screened on whole-genome arrays containing genes from M.tuberculosis H37Rv, M.tuberculosis CDC1551 and M.bovis AF22197. Screening identified 198 deletions or extra regions in the clinical isolates compared to H37Rv. Twenty-two regions differentiated between Beijing and non-Beijing isolates and were verified by PCR on an additional 40 isolates. Six regions (Rv0071-0074 [RD105], Rv1572-1576c [RD149], Rv1585c-1587c[RD149], MT1798-Rv1755c [RD152], Rv1761c [RD152] and Rv0279c) were deleted in Beijing isolates, of which 4 (Rv1572-1576c, Rv1585c-1587c, MT1798-Rv1755c and Rv1761c) were variably deleted among ST42 isolates, indicating a closer relationship between the Beijing and ST42 lineages. The TbD1 region, Mb1582-Mb1583 was deleted in Beijing and ST42 isolates. One M.bovis gene of unknown function, Mb3184c was present in all isolates, except 11 of 13 ST42 isolates. The CDC1551 gene, MT1360 coding for a putative adenylate cyclase, was present in all Beijing and ST42 isolates (except 1). The pks15/1 gene, coding for a putative virulence factor, was intact in all Beijing and non-Beijing isolates, except in ST42 and ST53 isolates. Conclusion. This study describes previously unreported deletions/extra regions in Beijing and non-Beijing M.tuberculosis isolates. The modern and highly frequent ST42 lineage showed a closer relationship to the hypervirulent Beijing lineage than to the ancient non-Beijing lineages. The pks15/1 gene was disrupted only in modern non-Beijing isolates. This is the first report of an in-depth analysis on the genomic diversity of M.tuberculosis isolates from Myanmar. Data is also available from http://bugs.sgul.ac.uk/E-BUGS-66
Project description:We show here by using genome-wide ChIP-sequencing that lineage segregation involves multiple Sox/Oct partnership. In undifferentiated ES cells Oct4 interacts with Sox2 and both TFs bind on the 'canonical' motif, whereas in cells commited to PrE lineage Oct4 switches from Sox2 to Sox17 interaction and this complex bind to a unique "compressed" motif.
Project description:It is evident that epigenetic factors, especially DNA methylation, play essential roles in obesity development. To learn systematic association of DNA methylation to obesity, we used pig as a model, and sampled eight diverse adipose tissues and two distinct skeletal muscle tissues from three pig breeds with distinguished fat levels: the lean Landrace, the fatty Rongchang, and the feral Tibetan pig. We sequenced 180 methylated DNA immunoprecipitation (MeDIP) libraries, generated 1,381 Gbp sequence data, and provided a genome-wide DNA methylation map for pig adipose and muscle studies. The analysis showed global similarities and differences between breeds, genders and tissues, and identified the differentially methylated regions (DMRs) that are preferentially located in intermediate CpG promoters and CpG island shores. The DMRs in promoters are highly associated to obesity development. We also analyzed methylation and regulation of the known obesity-related genes and predicted novel candidate genes. The comprehensive map here provides a solid base for exploring epigenetic mechanisms of adipose deposition and muscle growth. We collected eight diverse adipose tissues and two phenotypically distinct skeletal muscle tissues from three well-defined pig models with distinct fat rates, and studied genome-wide DNA methylation differences among breeds, males and females, and tissues.