Project description:Myanmar locates in the crossroads of South Asia, Southeast Asia, and East Asia, and is known for high culture diversity in different ethnic groups. It is considered to be important for understanding human evolutionary history and genetic diversity in East Eurasia. However, relatively few studies have examined the population structure and demographic history in Myanmar to date. In this study, we analyzed more than 220,000 genome-wide SNPs in 175 new samples of five ethnic groups from Myanmar and compared them with the published data. Our results showed that the Myanmar population is intricately substructured, with the main observed clusters corresponding roughly to western/northern highlanders (Chin, Naga, and Jingpo) and central/southern lowlanders (Bamar and Rakhine). The gene flow inferred from South Asia has a substantial influence (~11%) on the gene pool of central/southern lowlanders rather than western/northern highlanders. The genetic admixture is dated around 650 years ago. These findings suggest that the genome-wide variation in Myanmar was likely shaped by the linguistic, cultural, and historical changes.
2019-12-31 | GSE74100 | GEO
Project description:MIG-seq for freshwater fishes in Inle Lake, Myanmar
Project description:In this study, we attempt to characterize the transcriptomic profile of the Asian seabass brains collected from the male and female sexes. The objective is to identify genes that show sexually dimorphic expression in the brain of this species. For this experiment, Asian seabass were collected from the Marine Aquaculture Center of the Agri-Food & Veterinary Authority of Singapore. There were no treatments carried out in this experiment. Four brains from adult male seabass (5 years old) with M3-type testis and four brains from adult female seabass (5 years old) with F3-type ovaries were used in this experiment. (Gonads were examined by histology and classified according to sexual maturation status as described by Guiguen and colleagues (Guiguen et al. Environmental Biology of Fishes, 1994)). Total 8 samples. Male Brain : 4 Female Brain : 4
Project description:In this study, we attempt to characterize the transcriptomic profile of the Asian seabass brains collected from the male and female sexes. The objective is to identify genes that show sexually dimorphic expression in the brain of this species. For this experiment, Asian seabass were collected from the Marine Aquaculture Center of the Agri-Food & Veterinary Authority of Singapore. There were no treatments carried out in this experiment. Four brains from adult male seabass (5 years old) with M3-type testis and four brains from adult female seabass (5 years old) with F3-type ovaries were used in this experiment. (Gonads were examined by histology and classified according to sexual maturation status as described by Guiguen and colleagues (Guiguen et al. Environmental Biology of Fishes, 1994)).
Project description:We describe here transcripts induced after infection of zebrafish with Spring Viremia Carp Virus (SVCV). Two days after infection, differentially expressed transcript levels from selected immune-related zebrafish genes were studied in internal organs (pooled spleen, head kidney). Also, transcripts from resistant fishes to viral infection one month after inoculation were studied. Three different experiments were performed to get three biological replicates. Fishes were divided into two groups in each experiment. First group was infected by immersion with SVCV 10^7 pfu/ml, second group was used as a control of non-infected fishes. 6 fishes per group were sacrificed two days post infection, whereas the rest of the infected fishes from the three experiments were maintained for 30 days in the aquariums and then survivors (six for experiment) were sacrificed. This submission includes three biological replicate groups for the non-infected fish and the two days post-infected fish, and two biological replicate groups for the 30 days post-infected fish.
Project description:In this study, we attempt to characterize the transcriptomic profile of the Asian seabass gonads at various developmental stages. The protandric Asian seabass or barramundi (Lates calcarifer) typically matures as a male at approximately 2–4 years of age and then changes sex to a female in later years. For this experiment, Asian seabass of several ages were collected from the Marine Aquaculture Center of the Agri-Food & Veterinary Authority of Singapore and from farms around Singapore. There were no treatments carried out in this experiment. The gonads were examined by histology and classified according to sexual maturation status as described by Guiguen and colleagues (Guiguen et al. Environmental Biology of Fishes, 1994). Altogether, we analyzed 22 gonadal samples that could be classified into six different types of gonads.
Project description:Humans harbor numerous species of colonic bacteria that digest the fiber polysaccharides in commonly consumed terrestrial plants. More recently in history, regional populations have consumed edible seaweeds (macroalgae) containing unique polysaccharides. However, it remains unclear how extensively gut bacteria have adapted to digest these novel nutrients. Here, we show that the ability of gut bacteria to digest seaweed polysaccharides is considerably more pervasive than previously appreciated. Using culture-based approaches, we show that known Bacteroides genes involved in seaweed degradation have mobilized into many members of this genus. We also identify new marine bacteria-derived genes, and their corresponding mobile DNA elements, that are involved in degrading several seaweed polysaccharides. Some of these new genes reside in gut-resident, Gram-positive Firmicutes, for which phylogenetic analysis suggests an origin in the Epulopiscium gut symbionts of marine fishes. Our results are important for understanding the metabolic plasticity of the human gut microbiome, the global exchange of genes in the context of dietary selective pressures and identifying new functions that can be introduced or engineered to design and fill orthogonal niches for a future generation of engineered probiotics.